期刊文献+

目标关联规则挖掘算法的研究与应用 被引量:3

The Research and Application of Objective Association Rules Mining Algorithm
下载PDF
导出
摘要 提出了一种基于数字化的目标关联规则挖掘算法,适合于从大型数据仓库中挖掘出与特定目标相关的隐含规则.其基本原理是用二进制的形式将数据库事务转换成数字事务,并在以数字事务为记录的数据库中,运用二进制的逻辑"与"运算计算出目标的效用度、包含目标的数字事务支持度和置信度,形成数字化的目标关联规则,接着根据数据库中的属性值信息解释关联规则.此算法的原理简单,扫描数据库仅需一次,算法执行效率比基于Apriori和Disjunctive-free的算法有明显提高. An algorithm of objective association rules mining based on digital is proposed,which is suitable for mining some potential rules related to the given object from large data warehouse.The basic principle of algorithm is that the digital objective association rules are formed according to this special information including the utility of objective,support and confidence of digital transaction containing objective,which is mined with binary logic "and" operation from many attribute-values of database,where transaction has been changed into digital by binary,and then digital objective association rules would be described with many attribute-values which are expressed as a kind of comprehensible language to people.The theory of algorithm is quite simple.The process of data mining only need scan database once,comparing with these algorithms based on Apriori and Disjunctive-free,the executed speed of digital objective association rules algorithm is obviously improved.The algorithm is used to guide education management by searching special objective association rules in the domain of education management.
作者 刘雨露 方刚
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期115-119,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市教委科技项目资助(KJ091108) 重庆三峡学院青年项目(10QN-30)
关键词 数据挖掘 数字事务 目标关联规则 二进制 教育管理 data mining digital transaction objective association rules binary education management
  • 相关文献

参考文献5

  • 1Agrawal R,Srikant R.Fast Algorithms Forming Association Rules in Large Database[C] //INTL.Proc of the 20th INTL conf on Very Large Databases.San Francisco:Morgan Kaufmann Publishers,1994:487-499.
  • 2Shen Yi-Dong,Zhong Zhang,Qiang Yang.Objective-Oriented Utility-Based Association Mining[C] //IEEE.Proceedings of the 2002 IEEE International Conference on Data Mining(ICDMp02).Washington:IEEE Computer Society,2002:426-433.
  • 3Raymond Chan,Qiang Yang,Yi-Dong Shen.Mining High Utility Itemset[c] //IEEE.Proceedings of the Third IEEE International Conference on.Data Mining.Washington:IEEE Computer Society,2003:19-26.
  • 4Bykowski A,Rigotti C.A Condensed Representation to Find Frequent Patterns[C] //ACM.Proceedings of the Twentieth ACM Symposium on Principles of Database Systems.Santa Barbara:ACM press,2001:267-273.
  • 5张学斌,丁晓明.一种基于关联规则的属性值约简算法[J].西南师范大学学报(自然科学版),2005,30(3):440-443. 被引量:8

二级参考文献9

  • 1张文修 等.Rough集理论与方法[M].北京:科学出版社,2001..
  • 2Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database [A]. Proceeding of the ACM-SIGMOD Conference On Management of data [C]. Washington: ACM Press, 1993. 207 - 216.
  • 3Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules [A]. Proceedings of the 20th VLDB Conference [C]. Santiago: ACM Press, 1994. 487- 499.
  • 4Richard Relue, Xindong Wu, Hao Huang. Efficient Runtime Generation of Association Rules [C]. Proceeding of 2001ACM CIKM Tenth International on Information Knowledge Management. New York: ACM Press, 2001.
  • 5Z. Pawlak. Rough Sets [J]. International Journal of Computer and Information Science, 1982, 11 : 341 - 356.
  • 6S K M Wong, W Ziarko. On optimal Decision Rules in Decision Tables [J]. Bulletin of Polish Academy of Sciences,1985, 33(11 - 12): 693 - 696.
  • 7Guan J W, Bell D A. Rough Computational Method for Information Systems [J]. Artificial Intelligence, 1998; 105(1/2): 77-103.
  • 8王珏,王任,苗夺谦,郭萌,阮永韶,袁小红,赵凯.基于Rough Set理论的“数据浓缩”[J].计算机学报,1998,21(5):393-400. 被引量:239
  • 9苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507

共引文献7

同被引文献16

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部