期刊文献+

一种重排时频谱的非平稳信号盲源分离方法 被引量:2

Blind Separation of Nonstationary Sources Based on Rearrangement Time-Frequency Spectrum
下载PDF
导出
摘要 在Akira Morimoto等人提出的空间时频盲源分离算法基础上,通过对时频谱进行重排使得信号的空间时频矩阵更接近于对角阵,从而得出一种新的盲源分离方法.该方法能有效分离各种非平稳信号且性能较好. Based on analyzing space time-frequency arithmetic of Akira Morimoto and rearranging time-frequency matrixes approximately to diagonal matrix,the paper proposes a new blind source method,which can separate nonstationary signals effectively and has better performance.
作者 郭靖 曾孝平
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期147-151,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金资助(XDJK2009C035)
关键词 平滑伪Wigner-Ville分布 重排理论 盲源分离 非平稳信号 SPWVD rearrangement theory blind source separation nonstationary signals
  • 相关文献

参考文献10

  • 1Rui Li,Hongwei Li,Fasong Wang.Dependent Component Analysis:Concepts and Main Algorithms[J].Journal of Computers,2010,5(4):589-597.
  • 2Duong N Q K,Vincent E,Gribonva R.Spatial Covariance Models for Under-determined Reverberant Audio Source Separation[C].New York:In Proc WASPAA,2009:129-132.
  • 3Martin Spiertz,Volker Gnann.Source-filter Based Clustering for Monaural Blind Source Separation[C].Italy:Proc of the 12th Int.Conference on Digital Audio Effects(DAFx-09),2009:1-7.
  • 4Akira Morimoto,Ashino Ryuichi,Takeshi Mandai,et al.Blind Source Separation Using Analytic Wavelet Transform[C].Hong Kong:Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition,2008:541-546.
  • 5Takehiro Hamada,Kazushi Nakano,Akihiro Ichijo.Wavelet-based Underdetermined Blind Source Separation of Speech Mixtures[C].Seoul:International Conference on Control,Automation and Systems,2007:2790-2794.
  • 6Mehmet Tankut(O)zgen,Ercan Engin Kuruoglu and Diego Herranz.Astrophysical Image Separation by Blind Time-Frequency Source Separation Methods[J].Digital Signal Processing,2009(19):360-369.
  • 7Zeyong Shan,Jacob Swary,Selin Aviyente.Underdetermined Source Separation in the Time-Frequency Domain[C].Hownlulu:ICASSP,2007:945-947.
  • 8[美] L.科恩.时-频分析:理论与应用[M].白居宪,译.西安:西安交通大学出版社,1998.
  • 9Flandrin P,Auger F,Chassande-Mottin E.Time-Frequency Reassignment:from Principles to Algorithms[J].Applications in Time-Frequency Signal Processing,2003(5):179-203.
  • 10Fadaili E M,Thirion-Moreau N,Moreau E.Nonorthogonal Joint Diagonalization/Zero Diagonalization for Source Separation Based on Time-Frequency Distributions[J].IEEE Trans.Signal Process,2007(5):1673-1687.

同被引文献29

  • 1徐毅,阮成礼,魏茂刚.一种性能优越的二次时频分布[J].电子科技大学学报,2005,34(5):581-584. 被引量:1
  • 2RUBEN M C, JOSE L C O, SUSANA H M, et al. Fast technique for noninvasive fetal ECG extraction [ J]. IEEE Transactions on Bio- medical Engineering, 2011, 58(2): 227-230.
  • 3LIU S J, LIU D L, ZHANG J Q, et al. Extraction of fetal electro- cardiogram using recursive least squares and normalized least mean squares algorithms [ C]//3rd Intemational Conference on Advanced Computer Control. Piscataway: IEEE, 2011:333-336.
  • 4CAMPS-VALLS G, MARTINEZ-SOBER M, SORIA-OLIVAS E, et al. Foetal ECG recovery using dynamic neural networks [ J]. Artifi- cial Intelligence in Medicine, 2004, 31(3): 197 -209.
  • 5CAMARGO-OLIVARES J L, MARTIN-CLEMENTE R. The mater- hal abdominal ECG as input to MICA in the fetal ECG extraction problem [J]. IEEE Signal Processing Letters, 2011, 18(3) : 161 - 164.
  • 6VAPNIK V. An Overview of Statistical Learning Theory[ J]. IEEE Transaction on Neural Networks, 1999, 10(5) : 988 -999.
  • 7OUTRAM N J. Intelligent pattern analysis of the foetal eleetroeardio- gram [D]. Plymouth: University of Plymouth, 1997.
  • 8BELOUCHRANI A, AMIN M G. Blind source separation based on time-frequency signal representations [ J]. IEEE Transaction on Signal Processing, 1998, 46(11) : 2888 - 2897.
  • 9HOLOBAR A, FEVOTTE C, DONCARLI C, et al. Single autote- rms selection for blind source separation in time-frequency plane [ C]//EUSIPCO 2002: Proceedings of the 1 hh European Signal Processing Conference. Toulouse: [ s. n. ], 2002:1 -4.
  • 10FEVOTYE C, DONCARLI C. Two contributions to blind source separation using time-frequency distributions [ J]. IEEE Singnal Processim, Letters. 2004. 11(3) : 386 -389.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部