摘要
Vehicular networks have traditionally been used in specific scenarios, such as Electronic Toll Collection (ETC). New vehicular networks, however, support communication of safety information between vehicles using self-organized ad-hoc technology. Because of limitations in network architecture, current vehicular networks only provide communication for mobile terminals in a vehicle cluster. Vehicles cannot exchange information with an Intelligent Traffic System (ITS) control center nor can they access broadband wireless networks. This paper proposes a novel heterogeneous vehicular wireless architecture based on Wireless Access in Vehicular Environment (WAVE, IEEE 802.1 lp) and Worldwide Interoperability for Microwave Access (WiMAX, IEEE 802.16e). A new network infrastructure and system model is introduced, and key technologies are discussed. For WAVE, these technologies include adaptive multichannel coordination mechanism and scheduling algorithm; and for WiMAX, these technologies include group handover scheme and two-level resource allocation algorithm.
Vehicular networks have traditionally been used in specific scenarios, such as Electronic Toll Collection (ETC). New vehicular networks, however, support communication of safety information between vehicles using self-organized ad-hoc technology. Because of limitations in network architecture, current vehicular networks only provide communication for mobile terminals in a vehicle cluster. Vehicles cannot exchange information with an Intelligent Traffic System (ITS) control center nor can they access broadband wireless networks. This paper proposes a novel heterogeneous vehicular wireless architecture based on Wireless Access in Vehicular Environment (WAVE, IEEE 802.1 lp) and Worldwide Interoperability for Microwave Access (WiMAX, IEEE 802.16e). A new network infrastructure and system model is introduced, and key technologies are discussed. For WAVE, these technologies include adaptive multichannel coordination mechanism and scheduling algorithm; and for WiMAX, these technologies include group handover scheme and two-level resource allocation algorithm.
基金
funded by the National High Technology Research and Development Program of China ("863" Program) under Grant No. 2007AA01Z239
the National Science and Technology Major Projects under Grant No. 2011ZX03001-007-03