期刊文献+

基于多重分形参量Cq的股票市场分析 被引量:1

Stock Market Analysis Based on Parameter Cq of Multifractal
下载PDF
导出
摘要 对沪深300整体指数及其中相关行业的股票进行多重分形分析,发现股票市场具有多重分形性。其中金融业、运输业、电气业的股票指数波动较小,钢铁业、煤炭业和地产业的股票指数波动较大,土木建筑业、医药业的股票指数波动处于中间位置。分析参量Cq的图像发现每一支股票都有自身的临界点,并且在由Cq构成的三维图像中代表同一行业股票的点比较集中,形成一个簇,从该图中可以看出整个大盘指数与钢铁业、煤炭业和地产业的联系比较紧密。 Based on the multifractal analysis of the Shanghai and Shenzhen 300 index and stocks related industries, found the stock market has multifractal nature. Financial sector, transportation, electrical industry have smaller stock index volatility, steel industry, coal industry and real estate have larger stock index volatility, civil construction, pharmaceutical industry in the middle of stock index volatility. By analyzing the parameter Cq find that each stock has its own critical point, and in three-dimensional images constituted by Cq to represent shares of point in the same industry are concentrated, forming a cluster. From the figure can see that the relationship between the whole market index and steel industry, coal industry, real estate sectors are more closely.
出处 《计算机技术与发展》 2011年第1期178-180,共3页 Computer Technology and Development
基金 安徽省高等学校省级自然科学研究项目(KJ2007B239)
关键词 多重分形 多重分形谱 广义分形维数Dq 参量Cq multifractal multifractal spectrum generalized fractal dimension Dq parameter Cq
  • 相关文献

参考文献11

二级参考文献89

共引文献135

同被引文献31

  • 1黄超,吴清烈,武忠,朱扬勇.基于方差波动多重分形特征的金融时间序列聚类[J].系统工程,2006,24(6):100-103. 被引量:13
  • 2Tokinaga S. The Analysis of the Economy Models based on the Complex System[M].Fukuoka:Kyushu University Press,2000.
  • 3Peters E E. Fractal Market Analysis:Applying Chaos Theory to Investment and Economics[M].New York:wiley,1994.
  • 4Tokinaga S,Takebayashi W. Prediction of self-similar traffic by using time scale explanation of fractal time series and its application[A].1998.205-214.
  • 5Tokinaga S,Moriyasu H,Miyazaki A. Forecasting of time series with fractal geometry by using scale transformations and parameter estimations obtained by the wavelet transform[J].Electronics and Communications in Japan Part 3,1997,(08):20-30.
  • 6Alvarez-Ramirez J,Alvarez J,Rodriguez E. Time-varying Hurst exponent for US stock markets[J].Journal of Physics A,2008,(24):6159-6169.
  • 7Katsuragi H. Evidence of multi-affinity in the Japanese stock market[J].Journal of Physics A,2000,(1-2):275-281.
  • 8Kantelhardt J W,Zschiegner S A,Koscielny-Bunde E. Multifractal detrended fluctuation analysis of nonstationary time series[J].Journal of Physics A,2002,(1-4):87-114.doi:10.1016/S0378-4371(02)01383-3.
  • 9Matia K,Ashkenazy Y,Stanley H E. Multifractal properties of price fluctuations of stocks and commodities[J].Europhysics Letters,2003,(03):422-428.
  • 10Zunino L,Tabak B M,Figliola A. A multifractal approach for stock market inefficiency[J].Journal of Physics A,2008.6558-6566.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部