期刊文献+

双圈图的Laplacian谱展 被引量:2

The Laplacian Spread of Bicyclic Graphs
下载PDF
导出
摘要 设G是一个简单连通图,矩阵L(G)=D(G)-A(G)称为图的Laplacian矩阵,其中D(G)是图的度对角线矩阵,A(G)是G的邻接矩阵.连通图G的Laplacian谱展是图的最大特征值与次小特征值之差.边数等于顶点数加1的连通图叫做双圈图.研究了双圈图的Laplacian谱展,并确定了具有最大Laplacian谱展的双圈图. Let G be a simple connected graph.The matrix L(G)=D(G)-A(G) is called the Laplacian matrix of G,where D(G) is the degree diagonal matrix while A(G) is the adjacency matrix of G.The Laplacian spread of a connected graph G is the difference between the largest and second smallest eigenvalue of L(G).A connected graph is bicyclic if its size equals to its order plus one.The Laplacian spread of bicyclic graphs is studied and the extremal graphs with the maximal Laplacian spread are determined.
作者 林西芹
出处 《烟台大学学报(自然科学与工程版)》 CAS 北大核心 2011年第1期6-9,共4页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10871205) 山东省自然科学基金资助项目(Y2008A04)
关键词 双圈图 LAPLACIAN特征值 Laplacian谱展 bicyclic graphs Laplacian eigenvalues Laplacian spread
  • 相关文献

参考文献5

  • 1Cvetkovic D, Doob M, Sachs I-I. Spectra of Graphs [ M]. New York: Academic Press, 1980.
  • 2Mohar B. The Laplacian spectrum of graphs [ C ]// Y Alavi, Chartrand G, Ollermann O R. Graph theory, Combinatorics and Applications, New York: John Wiley, 1991. 871-898.
  • 3Fan yizheng, Xu Jing, Wang Yi, et al. The Laplacian spread of a tree [ J ]. Discrete Mathematics and Theoretical Computer Science, 2008, 10 (1) : 79-86.
  • 4He Changxiang, Shao Jiayu, He Jinling. On the Laplacian spectral radii of bicyclic graph [ J ]. Discrete Math, 2008, 308: 5981-5995.
  • 5魏福义,刘木伙.双圈图的Laplace矩阵的谱半径[J].纯粹数学与应用数学,2009,25(1):19-25. 被引量:1

二级参考文献7

  • 1Guo Jiming. On the Laplacian sprectral radius of a tree[J]. Linear Algebra and Its Applications,2003,368:379- 385.
  • 2Guo Jiming. On the second largest Laplacian eigenvalues of trees[J]. Linear Algebra and Its Applications,2005, 404:251-261.
  • 3Liu Bolian, Chen Zhibo, Liu Muhuo. On graphs with largest Laplacian index[J]. Czechoslovak Math. J.,2008,58 (4) :949-960.
  • 4Rojo O, Soto R, Rojo H. An always nontrivial upper bound for Laplacian graph eigenvalues[J]. Linear Algebra and Its Applications,2000,312:155-159.
  • 5Li Jiongsheng, Zhang Xiaodong. A new upper bound for eigenvalues of the Laplacian matrix of a graph[J]. Linear Algebra and Its Applications,1997,265:93-100.
  • 6Merris R. A note on Laplacian graph eigenvalues[J]. Linear Algebra and Its Applications,1998,285:33-35.
  • 7郭曙光.单圈图的Laplace矩阵的最大特征值[J].高校应用数学学报(A辑),2001,1(2):131-135. 被引量:23

同被引文献33

  • 1林泓,林晓霞.若干四角系统完美匹配数的计算[J].福州大学学报(自然科学版),2005,33(6):704-710. 被引量:29
  • 2Kasteleyn P W. The number of dimmer on a quadratic lattice [ J ]. Physica, 1961,27 (12) : 1209-1225.
  • 3Hall G G. A graphic model of a class of molecules [ J ]. Int J Math Edu Sci Technol, 1973, 4(3) :233-240.
  • 4Cyvin S J, Gutman I. Kekul Structures in Benzennoid Hydrocarbons[M]. Berlin:Springer Press,1988.
  • 5Ciucu M. Enumeration of perfect matchings in graphs with reflective symmetry[ J]. J Combin Theory Ser A,1997,77: 87-97.
  • 6Valiant L G. The complexity of computing the permanent [ J ]. Theoretical Compute Science, 1979, 8 (2) : 189-201.
  • 7Jockusch W. Perfect mathings and perfect squares[J]. J Combin Theory Ser A, 1994, 67:100-115.
  • 8Kasteleyn P W. Dimmer statistics and phase transition [ J]. Journal of Mathematical Physics, 1963 ,d :287-293.
  • 9Lovaisz L, Plummer M. Matching Theory [ M ]. New York: North-Holland Press, 1986.
  • 10Valiant L G. The complesity of computing the permanent [J]. Theroretical Compute Science, 1979, 8(2) :189-201.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部