期刊文献+

基于关键词距离的中文问答系统研究

Research on Chinese Question Answering System based on the Distance of Keywords
下载PDF
导出
摘要 阐述的中文问答系统是以网络信息为支撑,结合传统问答系统的思想和网络信息资源的特点,采取切实有效的方法,来回答用户用自然语言形式提出的问题。系统的核心部分是依据关键词距离算法进行答案抽取,该算法是在总结大规模网络摘要及中文问句特点的基础上得出的,从最后实验结果看该系统效果显著,对测试问句集的MRR值达到了0.56。 This paper describes the Question Answering System based on the internet information,integrates this system with the ideas of the common Question Answering System and the characteristics of the internet information,and takes several effective actions to answer users' questions which are expressed in natural language.The importance of this system is that it extracts answers according to the method based on the distance of keywords,the method is derived from the basis of summarizing a lot of text snippets and some Chinese questions, the experiment result indicates that the system can get relatively good results;the MRR of all questions is 0.56.
作者 陈玉
出处 《电脑开发与应用》 2011年第1期30-31,55,共3页 Computer Development & Applications
基金 山西大学商务学院科研基金资助项目(XZ2010052)
关键词 问答系统 信息检索 距离 question answering system information retrieval distance
  • 相关文献

参考文献4

二级参考文献18

  • 1[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 2[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 3[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 4[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 5[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 6[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 8[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[6]S-M Kim,D-H Baek,S-B Kim,H-C Rim. Question Answering Considering Semantic Categories and CoOccurrence Density. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部