期刊文献+

布朗单增量“快点”集的Packing维数

Packing Dimension of "Fast Point" Sets for Brownian Sheet
下载PDF
导出
摘要 讨论布朗单样本轨道的重分形分析问题,通过构造一个上极限型分形集的方法,得到其不同的增量形式"快点"集的Packing维数结果.当T>0,0≤α<1,ET(α)时,有Dim(ET(α))=N,Dim(FT(α))=N,Dim(GT(α))=N,a.s..当0<α<1时,ET(α),FT(α)和GT(α)的Hausdorff维数与其Packing维数不相等. The multifractal analysis for the sample paths of Brownian sheet is discussed in the paper.The packing dimensions of "fast point" sets with different increment forms of Brownian sheet are given by constructing a random fractals of limsup type.If T0,0≤α1,ET(α),then Dim(ET(α))=N,Dim(FT(α))=N,Dim(GT(α))=N,(a.s.).The Hausdorff dimensions of ET(α),FT(α) and GT(α) isn't equal to their packing dimensions if 0a1.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2011年第1期109-112,共4页 Journal of Huaqiao University(Natural Science)
基金 华侨大学科研基金资助项目(08HZR20)
关键词 布朗单 “快点”集 PACKING维数 重分形分析 Brownian sheet "fast point" sets packing dimension multifractal analysis
  • 相关文献

参考文献3

二级参考文献15

  • 1胡迪鹤,刘禄勤,肖益民,吴军,赵兴球.随机分形[J].数学进展,1995,24(3):193-214. 被引量:9
  • 2Hu X, Taylor S J. The multifractal structure of stable occupation measure [J]. Stochastic Process and Their Appl. , 1997, 66: 283--299.
  • 3Shieh N R, Taylor S J. Logarithmic multifractal spectrum of stable occupation measure [J]. Stochastic Process and Their Appl., 1998, 75. 249--261.
  • 4Dembo A, Peres Y, Rosen J, et al. Thick points for planar Brownian motion and Erdoes-Taylor conjecture on random walk [J]. Acta Math., 2001, 186:239--270.
  • 5Dembo A, Peres Y, Rosen J, et al. Thick points for spatial Brownian motion. Multifractal analysis of occupation measure [J]. Ann. Probab., 2000, 28: 1--35.
  • 6Dembo A, Peres Y, Rosen J, et al.Thick points for transient symmetric stable process [J]. Elect. J. Probab. ,1999, 4: 1--18.
  • 7Dembo A, Peres Y, Rosen, J, et al. Thin points for Brownian motion [J]. Ann. Inst. H. Poincarè Math. Statist.Probab., 2000, 36: 749--774.
  • 8Orey S, Taylor S J. How often on a Brownian path does the law of iterated logarithm fail [J]. Proc. London Math.Soc., 1974, 28: 174--192.
  • 9Khoshnevisan D, Peres Y, Xiao Y M. Limsup random fractals [J]. Elect. J. Probab. , 2000, 5: 1--24.
  • 10Falconer K J. Fractal Geometry-mathematical Foundations and Applications [M]. New York: John Widely. , 1990.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部