期刊文献+

低质量Si材料制备太阳电池 被引量:7

Solar cell fabrication from low quality silicon feedstock
原文传递
导出
摘要 通过对比不同硼-磷(B-P)补偿程度的低成本、高杂质含量硅材料制备的太阳电池的性能,发现在含B和其它杂质含量都比较高的Si材料中通过掺入P补偿过多的B可以提高低质量Si片的电阻率、增加少数载流子寿命从而提高电池效率同时还能够减少电池性能的衰减。利用低质量Si材料(B含量2×10-6wt)制作出了效率达到14%左右的大面积太阳电池。 The performances of industrial multi-crystal solar cells with different boron-phosphorus(B-P) compensating levels were compared.The results revealed that using phosphorus(P) to compensate boron(B) was an effective way to increase resistivity and minority carrier lifetime of the low quality silicon wafer,and it could also reduce the light-induced degradation of the solar cells.Finally,the high-performance solar cells were fabricated by using the low quality silicon with B concentration of 2×10-6 wt,and the efficiency was about 14%.The reached compensation could also decrease the light-induced degradation,since the ironed boron compensated by the ironed phosphorus could prevent B-O recombination.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2011年第1期82-85,共4页 Journal of Optoelectronics·Laser
基金 中国科学院知识创新工程重要方向资助项目(KGCX2-YW-382)
关键词 太阳电池 冶金法太阳能级Si 铸锭 补偿 电阻率 效率 衰减 solar cell UMG ingot compensate resistivity efficiency light-induced degradation
  • 相关文献

参考文献2

二级参考文献26

  • 1吴亚萍,张剑,高学鹏,李廷举.多晶硅的真空感应熔炼及定向凝固研究[J].特种铸造及有色合金,2006,26(12):792-794. 被引量:17
  • 2A F B Braga, S P Moreira, P R Zampieri, et al. New processes for the production of solar-grade polycrystalline silicon: A review[J]. Solar Energy Materials & Solar Cells, 2008,92 : 418-424.
  • 3Yuge N, Hanazawa K, Nishikawa K, et al. Removal of phosphorus, aluminum and calcium by evaporation in molten silicon (in Japanese) [J].Japan Inst Metals, 1997, 61:1 086-1 093.
  • 4Pires J C S. ,Otubo J, Braga A F B, et al. The purification of metallurgical grafte silicon by electron beam melting [J].Journal of Materials Processing Technology, 2005, 169:21-25.
  • 5Sakata T, Miki T, Morita K. Removal of Iron and Titanium in Poly-Crystalline Silicon by Acid Leaching[J]. Jpn Inst Metals 2002,66:459- 465.
  • 6Morita K,MikiT. Thermodynamics of Solar-Grade- Silicon Refining [C]. Rome: International Meeting on Thermodynamics of Alloys,2002, (9) :8-13.
  • 7Kichiya Suzukil. , Tomonori Kumaga, Nobuo Sano. Removal of Boron from Metallurgical grade Silicon by Applying the Plasma Treatment[J]. ISIJ International, 1992,32:630 -634.
  • 8J C S Piresa, A F B Braga, P R Mei. Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace[J].Solar Energy Materials SolarCells. 2003,79 : 347-355.
  • 9Geerligs L J. , Wyers G. P. , Jensen R. , et al. solargrade silicon by a direct route based on carbothermic reduction of silicon Requirements and production technology[M]. ECN Report, The Netherlands,2002.
  • 10Takahiro Miki. Thermodynamic Properties of Titanium and lron in Molten Silicon [J].Metallurgical and Meterals Transactions B, 1997,28: 861-867.

共引文献15

同被引文献89

  • 1Fisher H, Pschunder W. Investigation of photon and thermal induced changes in silicon solar cells [R]. USA: Proceedings of the 10th IEEE PVSC Palo Alto, 1973:404.
  • 2Schmidt J, Bothe K. Structure and transformation of the metastable boron- and oxygen-related defect center in crys talline silicon[J]. Phys Rev B, 2004.69: 024107.
  • 3Macdonald D, Rougieux F, Cuevas A, et al. Light-induced boron-oxygen defect generation in compensated p-type Czochralski silicon[J]. J Appl Phys, 2009,105 : 093704.
  • 4Geilker J, Kwapil W, Rein S. Light-induced degradation in compensated p- and n-type Czochralski silicon wafers [J]. J Appl Phys, 2011,109 :053718.
  • 5Schutz-Kuchly T, Veirman J, Dubois S, et al. Light in duced-degradation effects in boron-phosphorus compensated n-type Czochralski silicon [J]. Appl Phys Lett, 2010, 96: 093505.
  • 6Schutz-Kuchly T, Dubois S, Veirman J, et al. Light-induced degradation in compensated n-type Czochralski silicon solar cells [J]. Phys Status Solidi A, 2011,208(3) : 572.
  • 7Osinniy V,Bomholt P, Nylandsted Larsen A, et al. Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route[J]. Solar Energy Mater Solar Cells,2011,95(2) :564.
  • 8Reina S, Glunz S W. Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced life- time spectroscopy[J]. J Appl Phys,2005,98:113711.
  • 9Adey J, Jones R, Palmer D W. Degradation of boron-doped Czochralski-grown silicon solar cells[J]. Phys Rev Lett, 2004,93(5):055504.
  • 10Schmidt J. Effect of dissociation of iron-boron pairs in crystalline silicon on solar cell properties [J]. Prog Photovolt: Res Appl, 2005,13 : 325.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部