摘要
Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume-Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order-disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy △xL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy AxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and AxL undergoes oscillations as a function of the Fermi level.
Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume-Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order-disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy △xL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy AxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and AxL undergoes oscillations as a function of the Fermi level.