期刊文献+

Some I-Convergent Sequence Spaces Defined by Orlicz Functions 被引量:3

Some I-Convergent Sequence Spaces Defined by Orlicz Functions
原文传递
导出
摘要 In this article we introduce the sequence spaces cI(M), c0I(M), mI(M) and m0I(M) using the Orlicz function M. We study some of the properties like solid, symmetric, sequence algebra, etc and prove some inclusion relations. In this article we introduce the sequence spaces cI(M), c0I(M), mI(M) and m0I(M) using the Orlicz function M. We study some of the properties like solid, symmetric, sequence algebra, etc and prove some inclusion relations.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第1期149-154,共6页 应用数学学报(英文版)
关键词 IDEAL filter Orlicz function I-convergent I-null solid sequence algebra SYMMETRIC convergencefree Ideal, filter, Orlicz function, I-convergent, I-null, solid, sequence algebra, symmetric, convergencefree
  • 相关文献

参考文献16

  • 1Bhardwaj, V.K., Singh, N. Some sequence spaces defined by Orlicz functions. Demonsfratlo Math., 33(3): 571 582 (2000).
  • 2Demirci, K. Ilimit superior and limit inferior. Math. Commun., 6:165-172 (2001).
  • 3Esi, A., Et, M. Some new sequence spaces defined by a sequence of Orlicz functions. Indian J. Pure Appl. Math., 31(8): 967-972 (2000).
  • 4Et, M. On Some new Orlicz sequence spaces. J. Analysis, 9:21 28 (2001).
  • 5Esi, A. Some new sequence spaces defined by Orlicz functions. Bull. Inst. Math. Acad. Sinica., 27:71-76 (1999).
  • 6Kamthan, P.K., Gupta, M. Sequence spaces and Series. Marcel Dekker, New York, 1980.
  • 7Korasnoselkii, M.A., Rutitsky, Y.B. Convex functions and Orlicz functions. Groningoen, Netherlands, 1961.
  • 8Kostyrko, P., Salat, T., Wilczyfiski, W. I-convergence. Real Analysis Exchange, 26(2): 669-686 (2000).
  • 9Lindenstrauss, J., Tzafriri, L. On Orlicz sequence spaces. Israel J. Math., 101:379-390 (1971).
  • 10Maddox, I.J. Elements of Functional Analysis. Cambridge Univ. Press, 1970.

同被引文献2

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部