期刊文献+

实际叶片前缘冲击冷却流动和换热的数值研究 被引量:8

Numerical Study on Flow and Heat Transfer of Impingement Cooling on Leading Edge of Actual Turbine Blade
下载PDF
导出
摘要 应用数值方法研究了射流孔径对燃汽轮机透平叶片前缘内部冲击冷却流动和换热的影响,并采用商用计算流体力学软件CFX11.0求解稳态可压时均N-S方程,且SSTκ-ω湍流模型的总体求解精度为二阶.以某典型燃汽轮机透平叶片前缘中截面拉伸的曲面为研究对象,同时考虑了相同射流量下的4种不同射流孔径的影响,经研究表明:在计算条件下,随着射流孔径增大,靶面上平均努塞尔数和弧长方向平均努塞尔数沿展向的分布都更为均匀,从中截面到叶顶位置的分布更是如此;靶面上的努塞尔数和弧长方向平均努塞尔数的最小值随着射流孔径的增大而增大,这说明采用大射流孔径可以有效提高冲击冷却的换热量,减小冲击冷却引起的热应力. A numerical study was performed to simulate the flow and heat transfer of impinge ment cooling on the leading edge of a turbine blade. Calculations were done by using a commercial CFD software CFX11. 0 to solve Reynolds-averaged N-S equations in conjunction with the SST κω two-equation turbulence model with an overall accuracy of the second order. The influences of four jet nozzle diameters at the same mass flow rate were considered for a target surface stretched by the middle cross section of the internal leading edge of a typical modern gas turbine blade. The result shows that the Nusselt number at the turbine blade leading edge and the streamwise average Nusselt number are more even when the jet nozzle diameter is larger, especially from the mid- dle span to the tip of the blade. The minimum values of Nusselt number of the turbine blade leading edge and streamwise average Nusseh number will increase with the jet nozzle diameter, indicating that larger jet nozzle diameters will improve the performance of impingement cooling on the leading edge of a turbine blade.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第1期5-9,20,共6页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2007CB210107)
关键词 射流孔径 冲击冷却 实际叶片前缘 冲击射流 jet nozzle diameter impingement cooling actual blade leading edge impinging jet
  • 相关文献

参考文献11

  • 1HAN J C. Gas turbine heat transfer and cooling technology[M]. New York, USA: Taylor ^ Francis, 2000.
  • 2CHUPP R E, HELMS H E, MCFADDEN P W, et al. Evaluation of internal heat transfer coefficients for impingement cooled turbine airfoils [J]. Aircraft, 1969, 6(3):203-208.
  • 3BUNKER R S, METZGER D E. Local heat transfer in internally cooled turbine airfoil leading edge regions: part I impingement cooling without film coolant extraction[J].ASMEJ Turbomachinery, 1990, 112(3): 451-458.
  • 4CHOI M, YOO H S, YANG G, et al. Measurements of impinging jet flow and heat transfer on a semi-circular concave surface[J]. Int J Heat Mass Transfer, 2000, 43(10)1811-1822.
  • 5KUMA B V N R, PRASAD B V S S S. Computational flow and heat transfer of a row of circular jets impin- ging on a concave surface[J]. Heat Mass Transfer, 2008, 44 (6) 667-678.
  • 6ALVAREZ J J, CALZADA P D L, KRULIC G. Heat transfer and flow characteristics of a leading edge impingement cooling system for low pressure turbine vanes,ASME Paper GT2008-50142[R]. Norcross, USA: ASME International Gas Turbine Institute, 2008.
  • 7郑际睿 王宝官.模拟透平叶片冲击冷却的实验研究.工程热物理,1980,1(2):165-175.
  • 8苑中显,阎小军,王秋旺,陶文铨.实际叶型前缘冲击冷却换热的液晶显示实验研究[J].西安交通大学学报,1999,33(11):55-58. 被引量:6
  • 9TIMKO L P. Energy efficient engine high pressure turbine component test performance report, NASA CR 168289[R]. Washington, DC, USA: NASA, 1984.
  • 10LIU Zhao, FENG Zhenping, SONG Liming. Numerical study of flow and heat transfer of impingement cooling on model of turbine blade leading edge, ASME Paper GT2010-23711 [R].Norcross, USA: ASME International Gas Turbine Institute, 2010.

二级参考文献11

  • 1康滢,邱绪光,周维.近距离散冲击射流换热实验研究[J].航空动力学报,1993,8(2):165-168. 被引量:1
  • 2任苓华,航空动力学报,1987年,2卷,1期,13页
  • 3BUNKER R S, BALLEY J C, AMERI A A. Heat transfer and flow on the first-stage blade tip of a power generation gas turbine part 1-experimental results [J]. ASME Journal of Turbomachinery, 2000, 122 (2):263-271.
  • 4AZAD G S, HAN Jechin. Heat transfer and flow on the squealer tip of a gas turbine blade[J]. Journal of Turbomachinery, 2000, 122(4) :725-732.
  • 5KWAK J S, HAN Jechin. Heat transfer coefficients on the squealer tip and near squealer tip regions of a gas turbine blade[J]. ASME Journal of Heat Transfer, 2003, 125(3) :669-677.
  • 6AZAD G S, HAN Jechin, BUNKER R S, et al. Effect of squealer geometry arrangement on a gas turbine blade tip heat transfer [J]. ASME Journal of Heat Transfer, 2002, 124(3) :452-459.
  • 7KWAK J S, AHN J, HAN Jechin.Effects of rim location, rim height, and tip clearance on the tip and near tip region heat transfer of a gas turbine blade[J]. International Journal of Heat and Mass Transfer, 2004, 47(26) :5651-5663.
  • 8NASIR H, EKKAD S V, KONTROVITZ D M, et al. Effect of tip gap and squealer geometry on detailed heat transfer measurements over a high pressure turbine rotor blade tip[J]. ASME Journal of Turbomachinery, 2004, 126(2):221-228.
  • 9SAXENA V, EKKAD S V. Effect of squealer geometry on tip flow and heat transfer for a turbine blade in a low speed cascade[J]. ASME Journal of Turbomachinery, 2004, 126(4) : 546-553.
  • 10NEWTON P J, LOCK G D, KRISHNABABU S K, et al. Heat transfer and aerodynamics of turbine blade tips in a linear cascade[J]. ASME Journal of Turbomachinery, 2006, 128(2) :300-309.

共引文献24

同被引文献153

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部