期刊文献+

离心风机吸声蜗壳结构的数学物理模型及实验验证 被引量:5

Mathematical-Physical Model of Noise-Absorbing Volute of Centrifugal Fan and Experimental Validation
下载PDF
导出
摘要 为了降低离心风机气动噪声,设计了一种由穿孔蜗板、吸声材料、微穿孔板和空腔组成的吸声蜗壳结构,并采用声电类比方法建立了吸声蜗壳的数学物理模型.基于该模型分析发现:采用一定厚度的吸声材料可以在大约1~8kHz频率范围内对气动噪声取得较好的吸声效果,适当增加吸声材料厚度可使得具有较高吸声系数的频率范围向低频方向适当拓宽,加之再增加一定的空腔厚度可以提高某低频离散噪声的吸收效果.计算得出的降噪量和吸声系数的变化趋势基本一致,且随着声波在固体表面反射次数的增加,降噪量逐渐增加并趋于6dB.对不同工况和吸声结构尺寸下的离心风机进行了多次实验测量,结果印证了所提模型的适用性.该模型可以作为所提结构吸声蜗壳进行优化设计时的辅助计算工具. To reduce the aerodynamic noise of centrifugal fans, a mathematical-physical model was established to analyze the property of the sound-absorption volute of a centrifugal fan, which is composed of a perforated volute plate, an acoustic-absorbing liner, a micro-perforated plate and a cavity. The analysis with this model indicates that the absorbing liner of certain thickness would yield fine effect absorbing aerodynamic noise of about 1-8 kHz. The frequency range with higher coefficient values would be widened towards the direction of low frequency with the increase in liner thickness. Further application of cavity presents better effect absorbing tonal aero- dynamic noise of a low frequency within a narrow range. The theoretical amount of noise reduction shows a similar tendency to that of sound-absorption coefficient, and increases with the in- crease in the number of wave reflections. The noise reduction rises gradually to a constant value of about 6dB. Experimental results of multiple tests on the centrifugal fan with this sound- absorption volute for different operation conditions and geometry configurations are consistent with the predictions by the present model.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第1期83-88,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50976084)
关键词 离心风机 气动噪声 蜗壳 吸声材料 centrifugal fan aerodynamic noise volute acoustic-absorbing liner
  • 相关文献

参考文献10

  • 1MA Z K, ZHANG X. Numerical investigation of broadband slat noise attenuation with acoustic liner treatment [J].AIAA Journal, 2009, 47(12) : 2812- 2820.
  • 2TSE M C, LEBLANC A. Fan and compressor noise attenuation: USA, 6973193B1 [P]. 2005-12-06.
  • 3KOBAYASHI H, KOH M, OZAKI S, et al. New- developed adaptive noise absorption control technolo- gy for high speed fan noise reduction [J]. JSME In ternational Journal : Series C, 2006, 49 (3) : 703-712.
  • 4刘晓良,祁大同,刘天一,袁民建.前向离心风机吸声蜗壳降噪的试验研究[J].西安交通大学学报,2009,43(3):92-96. 被引量:11
  • 5LEO L B, ISTVAN L V. Noise and vibration control engineering[M]. New York, USA: John Wiley and Sons, 1992.
  • 6DELANY M E, BAZLEY E N. Acoustic properties of fibrous absorbent material [J]. Applied Acoustics, 1970, 3: 105-116.
  • 7DUNN I P, DAVERN W A. Calculation of acoustic impedance of multi-layer absorbers[J]. Applied Acoustics, 1986, 19: 321-334.
  • 8LEE F C, CHEN W H. Acoustic transmission analysis of multi-layer absorbers [J].Journal of Sound and Vibration, 2001, 248(4)621-634.
  • 9ZHU Congyun, HUANG Oibai. A method for calcu lating the absorption coefficient of a multi-layer absorbent using the electro-acoustic analogy [J].Applied Acoustics, 2005, 66: 879-887.
  • 10毛义军,祁大同,刘晓良.蜗壳散射对离心风机气动噪声传播的影响[J].西安交通大学学报,2009,43(5):51-55. 被引量:7

二级参考文献16

  • 1毛义军,祁大同,刘秋洪.基于非定常流场的离心风机气动噪声分析[J].西安交通大学学报,2005,39(9):989-993. 被引量:61
  • 2Suarez S V, Tajadura R B. Numerical prediction of the aerodynamic tonal noise in a centrifugal fan [C/CD]// Proceedings of ASME'02 Engineering Division Summer Meeting. New York, USA:ASME, 2002: FEDSM 2002-31210.
  • 3LIU Qiuhong, QI Datong, MAO Yijun. Numerical calculation of centrifugal fan noise [J]. Proceedings of the Institution of Mechanical Engineers:Journal of Mechanical Engineering Science, 2006, 220:1167-1178.
  • 4M, GIKADI T, NEISE W, et al. Noise reduction in centrifugal fans by means of an acoustically lined casing [J]. Noise Control Engineering, 1977, 8(3): 100-107.
  • 5JEON W H, LEE D K. A numerical study on the flow and sound fields of centrifugal impeller located near a wedge [J]. Journal of Sound and Vibration, 2003, 266 :785-804.
  • 6LANGTHJEM M A, OLHOFF N. A numerical study of flow-induced noise in a two-dimensional centrifugal pump: hydroacoustics [J]. Journal of Fluids and Structures, 2004(19): 369-386.
  • 7NEISE W. Review of the noise reduction in centrifugal fan [J]. ASME Journal of Engineering and Industry, 1992,114:151-161.
  • 8WU T W, WAN G C. Numerical modeling of acoustic radiation and scattering from thin bodies using a Cauchy principal integral equation [J]. Journal of Acoustical Society of America, 1992, 92(5) :2900-2906.
  • 9MOON Y J, CHO Y, NAM H S. Computation of unsteady viscous flow and aeroacoustie noise of cross flow fans [J]. Computers & Fluids, 2003, 23: 995- 1015.
  • 10CHO Y, MOON Y J. Discrete noise prediction of vari-able pitch cross-flow fans by unsteady Naiver-Stokes computations [J]. ASME Journal of Fluids Engineering, 2003,125(2) : 543-550.

共引文献15

同被引文献74

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部