期刊文献+

S.L.Peng自适应分解算法的研究与探讨 被引量:2

Research and Discussion on S.L.Peng's Adaptive Signal Decomposition
下载PDF
导出
摘要 介绍S.L.Peng的基于瞬时频率和局部窄带信号的自适应分解方法,对两类局部窄带信号分解方法进行分析与研究。这种算法选取局部窄带信号作为基信号,通过构造奇异线性算子,从其零空间中提取局部窄带信号,从而实现信号的自适应分解,并通过与MP算法的比较,给出这两种算法的内在联系。 This paper introduces S. L. Peng' s adaptive signal decomposition based on instantaneous frequency and local narrow band signals, and then analyzes two types of local narrow band signal decomposition method. This algorithm selects local narrow band signals as the base signal, and extracts local narrow band signals from the null space of a singular local linear operator, so as to achieve the adaptive signal decomposition. By comparing with the Matching Pursuit (MP) method, it gives their internal relations.
作者 刘新 粟塔山
出处 《计算机与现代化》 2011年第1期32-35,共4页 Computer and Modernization
关键词 瞬时频率 局部窄带信号 自适应分解 instantaneous frequency local narrow band signal adaptive signal decomposition
  • 相关文献

参考文献13

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non- stationary time series analysis [ C ]//Proceedings of the Royal Society of London,Series A. 1998,454:903-995.
  • 2Chen Q H,Huang N E,Sherman R, et al. A B-spline approach for empirical mode decompositions [ J]. Advances in Computational Mathematics ,2006,24( 1 ) : 171-195.
  • 3Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms [ C ]//Proceedings of the 6th IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing( NSIP' 03 ). Grado, Italy ,2003.
  • 4Peng S L, Hwang W L. Adaptive signal decomposition based on local narrow band signals [ J ]. IEEE Trans. Signal Process, 2008,56 ( 7 ) : 2669-2676.
  • 5Peng S L, Hwang W L. Null space pursuit:An operator-based approach to adaptive signal separation [ J ]. IEEE Trans. on Signal Processing,2010,58(5 ) :2475-2483.
  • 6Hu Xiyuan, Peng Silong, Hwang Wen-Liang. Estimation of instantaneous frequency parameters of the operator-based signal separation method [ J ]. Advances in Adaptive Data Analysis ,2009,1 ( 13 ) : 1-14.
  • 7Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries[ J ]. IEEE Trans. on Signal Processing, 1993, 41 (12) :3397-3415.
  • 8张贤达,保铮.非平稳信号与处理[M].北京:国防工业出版社,1998.
  • 9Carmona P, Hwang W L, Torresani B. Characterization of signals by the ridges of their wavelet transform [ J ]. IEEE Trans. On Signal Processing, 1997,45 (10) :2586-2590.
  • 10Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Part 1: Fundamentals [ J ]. Proc. IEEE, part I, 1992,80(4) :520-538.

二级参考文献11

  • 1金丽花,刘兴钊,周志鑫.星载聚束式合成孔径雷达线性调频信号的频率Scaling算法[J].上海交通大学学报,2004,38(11):1777-1780. 被引量:2
  • 2盖强,张海勇,徐晓刚.Hilbert-Huang变换的自适应频率多分辨分析研究[J].电子学报,2005,33(3):563-566. 被引量:35
  • 3科恩L著.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 4Huang N E,Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London. A, 1998,454:903-995.
  • 5Milne P R,Paee P E. Wigner distribution detection and analysis of FMCW and P 4 polyphase I.PI waveforms[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. United States:Orlando FL.,2002 : 3944-3947.
  • 6Copeland D B, Pace P E. Detection and analysis of FMCW and P-4 polyphase LPI waveforms usingquadrature mirror filter trees[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. United States:Orlando FL,2002: 3960-3963.
  • 7Farrell T C,Prescott G E. A Nine-Tile algorithm for LPI signal detection using QMF filter bank trees[C]//Proeeedings of 1996 IEEE Military Communications Conference, United States:IEEE Service Center,Piscataway NJ,1996: 974-978.
  • 8Cruz-Roldan F, Amo-Lopez P, Maldonado-Bascon S,et al. An efficient and simple method for designing prototype filters for Cosine- Modulated Pseudo-QMF banks[J], IEEE Signal Processing Letters, 2002,9 ( 1 ) :29--31,
  • 9张海勇,马孝江,盖强.抑制时频分布交叉项的一种新方法[J].系统工程与电子技术,2002,24(1):28-30. 被引量:8
  • 10张海勇.一种新的非平稳信号分析方法——局域波分析[J].电子与信息学报,2003,25(10):1327-1333. 被引量:35

共引文献35

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部