期刊文献+

一种基于局部二值模式的阴影消除方法 被引量:1

Shadow Elimination Based on Local Binary Patterns
下载PDF
导出
摘要 运动目标检测和阴影消除是自动化视频分析系统的基础。本文根据视频背景与运动目标纹理的差异性以及背景与阴影纹理的相似性,提出一种利用局部二值模式作为图像纹理特征描述子,检测运动目标并消除阴影的方法。实验表明本文方法能在较好地抑制阴影同时,检测出完整运动目标。 Moving object detection and shadow elimination are basic steps in automatic video processing systems. The paper proposed an efficient texture-based moving objects detection and shadow elimination technique on the fact that local texture features are quite different between background and moving objects. Experimental results show that the method can detect moving object and supress shadows simultaneously.
作者 杜丙新
出处 《计算机与现代化》 2011年第1期110-112,116,共4页 Computer and Modernization
关键词 阴影消除 局部二值模式 GABOR滤波 shadow elimination local binary patterns Cabor filter
  • 相关文献

参考文献14

  • 1Massimo Piccardi. Background subtraction techniques:A review [ C ]//2004 IEEE International Conference on Systems, Man and Cybernetics. 2004,4:3099-3104.
  • 2Heikkil a M, Pietik a inen M, Heikkil a J. A texture-based method for detecting moving objects [ C ]//The 15th British Machine Vision Conference. 9004, 1: 187-196.
  • 3Yoneyama A, Yeh C H, Kuo C-C J. Moving east shadow elimination for robust vehicle extraction based on 2D joint vehicle/shadow models [ C ]//Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance. LosAngeles. 2003:229-236.
  • 4Dennis Gabor. Theory of communication [ J ]. Journal of the Institution of Electrical Engineers, 1946,26(93 ) :429-441.
  • 5Javier R Movellan. Tutorial on Gabor Filters[ EB/OL]. http ://mplab. ucsd. edu/tutorials/gabor. pdf,2009-09-02.
  • 6段先华,王元全,王平安,夏德深.利用Gabor滤波的相位图像进行光流估计[J].计算机辅助设计与图形学学报,2005,17(10):2157-2161. 被引量:5
  • 7Timo Ojala, Matti Pietia kinen, David Harwood. A comparative study of texture measures with classification based on feature distributions [ J ]. Pattern Recognition, 1996, 29: 51-59.
  • 8Timo Ojala, Matti Pietika inen, Topi M a enpa a. Multiresolu- tion gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24:971-987.
  • 9Xu Qing, Yang Jie, Ding Siyi. Texture segmentation using LBP embedded region competition[J]. Electronic Letters on CVIA ,2005,5:41-47.
  • 10Homen T, Hadid A, Pintikaine M. Face recognition with local binary, patterns [ C]//Proceedings of ECCV 2004, Lecture Notes in Computer Science 3021. Springer, 2004: 469-481.

二级参考文献27

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2ROWLEY H,BALUJA S,KANADE T.Rotation invariant neural network-based face detection[C]∥Proc IEEE Conf Computer Vision and Pattern Recognition Washington D C:IEEE Computer Society,1998:38-44.
  • 3FERAUD R,BERNIER O J,JEAN-EMMANUEL VIALLET,et al.A fast and accurate face detector based on neural networks[J].IEEE Trans Pattern Analysis and Machine Intelligence,2001,23(1):42-53.
  • 4SCHNEIDERMAN H,KANADE T.A statistical method for 3D object detection applied to faces and cars[C]∥IEEE Conf Computer Vision and Pattern Recognition South Carolina:[s.n.],2000:746-751.
  • 5LI Yong-min,GONG Shao-gang,LIDDELL H.Support vector regression and classification based multi-view facedetection and recognition[C]∥Proc 14th IEEE International Conference on Automatic Face and Gesture Recognition Grenoble:[s.n.],2000:300-305.
  • 6LI S Z,ZHU L,ZHANG Z Q,et al.Statistical learning of multi-view face detection[C]∥Proc 7th European Conference on Computer Vision:Part (Ⅳ) London:Springer-Verlag,2002:67-81.
  • 7LI S Z,ZHU L,ZHANG Z Q,et al.Learning to detect multi-view faces in real-time[C]∥Proc 2nd International Conference on Development and Learning Washington D C:IEEE Computer Society,2002:172.
  • 8SCHAPIRE R E,SINGER Y.Improved boosting algorithms using confidence-rated predictions[J].Machine Learning,1999,37(3):297-336.
  • 9Daugman J G. Uncertainty relation for resolution in space,spatial frequency, and orientation optimized by two-dimensional visual cortical filter [J]. Journal of the Optical Society of America A, 1985, 2(7): 1160~1169.
  • 10Horn B K P, Schunck B G. Determining optical flow [J].Artificial Intelligence, 1981, 17:185~203.

共引文献27

同被引文献10

  • 1Li Y, Gong P, Sasagawa T. Integrated shadow removal based on photogrammetry and image analysis [11. International Journal of Remote Sensing, 2005, 26(18) : 3911-3929.
  • 2Cucchiara R, Grana C, Piccardi M,Prati A., Sirotti S.Improving shadow suppression in moving object detection with HSV color inforrnation[A]Cucchiara R.Intelligent Transportation Systems, 2(1{}1[C]. IEEE, 20{)1,334-339.
  • 3Schreer O. et al., Fast and robust shadow detection in video conference applications[A], in Video/Image Processing and Muhimedia Communications 4th EURASIP-IEEE Region 81nternational Symposium on VIPromComIC|, 2002.371-375.
  • 4Mittal A, Paragios N.Motion-based background subtraction using adaptive kernel density estimation[A].Mittal A, Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 204 IEEE Computer Society Conference on [C],2004,302-309.
  • 5Sanin A,Sanderson C, Lovell B C.Improved Shadow Removal for Robust Person Tracking in Surveillance Scenarios[A] 201 2clth International Conference on Pattern Recognition [C],Conference Publications.
  • 6Mittal A,Paragios N. Motion-Based Background Subtraction using Adaptive Kernel Density Estimation[A].Mittal A. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern R.ecognition[C].IEEE Conference Publications. 2004.(2)302-309.
  • 7Prati A, Mikic I, Trivedi M, et al. Detecting moving shadows: Algorithms and evaluation[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7):918-923.
  • 8杨俊,赵忠明.基于归一化RGB色彩模型的阴影处理方法[J].光电工程,2007,34(12):92-96. 被引量:29
  • 9胡园园,王让定.基于局部纹理不变性的运动阴影去除算法[J].计算机应用,2008,28(12):3141-3143. 被引量:6
  • 10刘怀愚,李璟,洪留荣.基于多特征融合的运动车辆阴影消除方法[J].计算机工程,2011,37(13):156-159. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部