期刊文献+

具有脉冲和Holling Ⅳ类功能反应的三维捕食系统

A Three-species Predator-prey System with Impulse and Holling Ⅳ Functional Response
下载PDF
导出
摘要 建立了在固定时刻具有脉冲效应的三维捕食系统,利用常微分方程比较原理、含脉冲的比较原理及Lyapunov函数方法,得到了该系统的持续生存性、周期解的存在唯一性和全局吸引性,并给出了保持这些性质时脉冲项应满足的界限。 A three-species predator-prey system with impulse and Holling Ⅳ functional response is discussed. The persistence, the existence and the uniqueness of periodic solution are proposed by the global attractivity with Comparison theory and Lyapunov function of differential equation. Prior bounds are given to keep these qualities of the system.
出处 《后勤工程学院学报》 2011年第1期80-85,91,共7页 Journal of Logistical Engineering University
基金 国家自然科学基金资助项目(10971227)
关键词 脉冲 HOLLING Ⅳ类功能反应 持续生存 周期解 全局吸引 impulse Holling Ⅳ functional response persistence periodic solution global attractivity
  • 相关文献

参考文献12

二级参考文献35

  • 1马知恩.种群生态学的数学模型与研究[M].合肥:安徽教育出版社,1994..
  • 2马知恩.种群生态学的数学模型与研究[M].合肥:安徽教育出版社,1994..
  • 3Bainov D D,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Qpplictions.London:Longman Group UK,Limited,1993.121-127.
  • 4Lakahmikanthan V,Bainov D D ,Simeonov P S.Theory of Impulsive Differtial Equations.Singapore:World Scientific,1989.37-39.
  • 5Chen Lansun,Chen Jian. Nonlinear Biological Dynamic Systems[M]. Beijing: Chinese Science and Technology Publishing House, 1993.
  • 6Chen Lansun. Mathematical Models and Methods in Ecology[M]. Beijing:Chinese Science and Technology Publishing House, 1988.
  • 7Montes de Oca F, Zeeman M L. Extinction in nonautonomous competitive Lotka-volterra systems[J].Proc. Am. Math. Soc. 1996.124 : 3677 - 3687.
  • 8Ahmad S.Montes de Oca F. Extinction in nonautonomous T- periodic competitive Lotka-voherra system[J]. Appl. Math. Comput. , 1998,90:155-166.
  • 9Bainov D D.Simeonov P S: System with Impulsive Effect: Stability Theory and Applications[M]. NewYork:John Wiley & Sons,1989.
  • 10Laksmikantham V, Baivov D D,Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部