期刊文献+

基于用户行为分析的个人信息检索研究 被引量:11

User Behavior Based Personal Information Retrieval
下载PDF
导出
摘要 个人信息检索是指个人计算机上用户搜索个人信息(通常是文档)的过程,与互联网检索相比,个人信息检索能够利用的信息很少,这使得其检索结果的排序更加困难。该文通过考察计算机上的用户行为,对个人信息检索的排序问题进行深入的研究。该文考察的用户行为主要包括用户在检索系统中的查询行为和在计算机上的文件访问行为。该文一方面通过查询行为数据训练出结果排序函数,另一方面通过文件访问行为数据获取文件自身的权重,最后利用统计学习方法结合这两类行为的计算结果。实验结果表明,该文提出的方法好于传统的TFIDF排序方法。 Personal Information Retrieval(PIR) is an important technology for users searching files in their computers.Compared with Web retrieval,the information that can be used by PIR are very limited,which makes personal information retrieval a very difficult problem.In this paper,we collect user behavior information and use them to conduct an in-depth research on ranking problem of PIR.The user behavior information includes the user's search information and the file-access information.In this paper,we use search information to obtain training data and file-access information to computer file weights,then we use statistical learning method to learn ranking function.Experimental results show that our method performes better than the traditional TFIDF ranking method.
作者 蒋在帆 王斌
出处 《中文信息学报》 CSCD 北大核心 2011年第1期9-14,122,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60873166 60776797) 国家973计划资助项目(2007CB311103) 国家863计划资助项目(2006AA010105)
关键词 用户行为 个人信息检索 统计学习 RANKING SVM user behavior personal information retrieval statistical learning ranking SVM
  • 相关文献

参考文献11

  • 1S. Dumais, E. Cutrel, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins. Stuff Ive seen: a system for personal information relrieval and re use [C]//Proceedings of the 26th Annual International ACM SIGIR Conference. 2003.
  • 2Craig A. N. Soules, Gregory R. Ganger. Connections: using context to enhance file search[C]//Pro ceedings of the Twentyth ACM Symposium on Operat ing Systems Principles. 2005: 23-26.
  • 3Karl. Gyllstrom, Craig. Soules and Alistair. Veitch. Confluence: Enhancing Contextual Desktop Search [C]//Proceedings of the Thirtyth Annual International ACM SIGIR Conference. 2007: 23-22.
  • 4JOACHIMS, T. 1999. Making large-scale SVM learning practical. Advances in Kernel Methods-Support Vector Learning[M]. MIT Press, Chapter 11.
  • 5D.Karger, K. Bakshi, D. Huynh, D. Quan and V. Sinha. Haystack: A general purpose information management tool for end users of semistruetured data [C]//Proceedings of the Second Conference on Innovative Data Systems Research. 2005.
  • 6Paul Alexandru Chirita and Wolfgang Nejdl. Analyzing User Behavior to Rank Desktop Items[C]//Pro ceeding of the Second International Conference on Ubiquitous Information Management and Communication. 2008.
  • 7Sara Cohen, Carmel Domshlak and Naama Zwerdling. On Ranking Techniques for Desktop Search[J]. ACM Transactions on Information Systems, Vol. 26, No. 2, Article 11, March 2008.
  • 8Sara Cohen, Carmel Domshlak and Naama Zwerdling. On Ranking Techniques for Desktop Search[C]//Proceedings of the Sixteenth International World Wide Web Conference, May 8-12, 2007.
  • 9L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the Web [R]. Technical report,Stanford University, 1998.
  • 10Yunbo Cao, Jun Xu, Tie Yan, Liu, Mang Li, yalou Huang and Hsiao Wuen Hon. Adapting Ranking SVM to document retrieval[C]//Proeeeding of the 29th Annual International ACM SIGIR Conference. 2006.

同被引文献92

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部