期刊文献+

基于权重标准化SimRank方法的查询扩展技术研究 被引量:6

A Weight Normalization Based SimRank Approach for Query Expansion
下载PDF
导出
摘要 查询扩展是信息检索中的一项重要技术。传统的局部分析查询扩展方法利用伪相关文档作为候选词集合,然而部分伪相关文档并不具有很高的相关性。该文利用真实的搜索引擎查询日志,建立了查询点击图,经过多次图结构的转化得到能够反映词之间关联程度的词项关系图,并在图结构的相似度算法SimRank的基础上,提出了一种基于权重标准化的改进SimRank方法,该方法利用词项关系图中词项的全局和间接关系,能够有效挖掘与原始查询相关联的扩展词。同时,为降低SimRank算法的计算复杂度,该文采用了剪枝等策略进行优化,使得计算效率有大幅提高。在TREC标准数据集上的实验表明,该文的方法可以有效地选择相关扩展词。MAP指标较局部分析查询扩展方法提高了1.81%,在P@10和P@20指标评价中效果分别提高了5.44%和3.73%。 As an important technology in information retrieval,and traditional query expansion uses the pseudo-relevant documents as the candidate words set.But some of pseudo-relevant documents are not highly relevant.In our work,a query-click graph is built by a query log in real search engine.The term relationship graph which was obtained by several transformations reflects the direct relationship of the terms.We propose a weight normalization based SimRank approach—a revised algorithm based on the SimRank for the query expansion.In order to reduce the computational complexity of SimRank,strategies like pruning are used to optimize the algorithm.Experiments on large real AOL search engine query logs and a standard TREC corpus shows that our approach can discover the quality expansion terms effectively.The MAP of our approach is 1.81% higher than the query expansion based on pseudo relevance feedback,5.44% higher on P@10,and 3.73% higher on P@20.
出处 《中文信息学报》 CSCD 北大核心 2011年第1期28-34,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60673039 60973068) 国家社科基金资助项目(08BTQ025) 国家863高科技计划资助项目(2006AA01Z151) 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金资助项目(20090041110002)
关键词 搜索引擎 查询扩展 查询日志 SIMRANK search engine query expansion query logs SimRank
  • 相关文献

参考文献12

  • 1J. Xu and W. Croft. Query expansion using local and global document analysis [C]//Proceedings of SIGIR. Zurich, Switzerland,1996:4-11.
  • 2X. Wang, C. Zhai. Mining term association patterns from search logs for effective query reformulation [C]//Proceedings of CIKM. Napa Valley, California, USA, 2008:479-488.
  • 3宋巍,张宁,刘挺,等.基于检索历史七下文的个性化查询重构技术研究[C]//第五届全国信息检索学术会议.上海,中国,2009:144-152.
  • 4V. Dang, W. B. Croft, Query reformulation using anchor text [C]//Proceedings of WSDM. New York City, New York, USA,2010:41-50.
  • 5P. Boldi, F. Bonchi and C. Castillo. Query suggestions using query-flow graphs [C]//Proceedings of WSCD. Barcelona, Spain, 2009 : 51-58.
  • 6I. Antonellis, H. G. Molina and C. C. Chang. Simrank++: Query rewriting through link analysis of the click graph [C]//proceedings of VLDB. Auckland, New Zealand, 2008: 408- 421.
  • 7许晟,李亚楠,王斌,等.基于加杈SimRank的中文查询推荐研究[C]//第五届全周信息检索学术会议.上海,中国,2009:242-251.
  • 8D. Beeferman, A. Berger. Agglomerative clustering of a search engine query log [C]//Proceedings of SIGKDD. Boston, Massachusetts, USA, 2000 : 407- 416.
  • 9G. Jeh, J. Widom. SimRank.- A measure of struetur al-context similarity [C]//Proceedings of SIGKDD. Edmonton, Alberta, Canada, 2002 : 538-543.
  • 10F. Diaz, D. Metzler. Improving the estimation of relevance models using large external corpora [C]// Proceedings of SIGIR. Seattle, Washington, USA, 2006:154-161.

同被引文献69

  • 1李振龙.Web信息检索的技术分析与发展策略研究[J].计算机科学,2006,33(4):181-184. 被引量:11
  • 2王继民,彭波.搜索引擎用户点击行为分析[J].情报学报,2006,25(2):154-162. 被引量:45
  • 3ugmbbc.Googlebot开始检索网站深层内容.http://www.cnbeta.com/articlest53408.htm.2008-04-13.
  • 4赛迪网.CNNIC:搜索引擎起网络音乐成第一大应用.http://msn.chinabyte.com/894128/467918543507.shtml.2011-01-19.
  • 5骆卫华,刘群,张俊林.搜索引擎技术:性能提高遇到瓶颈.http://news.ccw.com.cn/produ/htm2006/20060810_202536_4.htm2006-08-10.
  • 6陈竹敏.面向垂直搜索引擎的主题爬行技术研究.济南:山东大学.2005.
  • 7Pitkow J, SchUtze H, Cass T, et al. Personalized Search [ J ]. Communications of the ACM, 2002,45 ( 9 ) : 50-55.
  • 8Cuerzan S, White R W. Query Suggestion based on Landing Pages [ C ]//Proceedings of SIGIR, 2007 : 875-876.
  • 9Jensen E C, Beitzel S M, Chowdhury A, et al. Query Phrase Suggestion From Topically Tagged Session Logs [ C ]//Proceedings of FQAS ,2006 : 185-196.
  • 10Kurland O, Lee L, Domshlak C. Better than the Real Thing? Iterative Pseudo-Query Processing using Cluster- Based Language Models [ C ]//Proceedings of SIGIR, 2005 : 19-26.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部