期刊文献+

基于浅层句法分析的中文语义角色标注研究 被引量:10

Research on Chinese Semantic Role Labeling Based on Shallow Parsing
下载PDF
导出
摘要 语义角色标注是获取语义信息的一种重要手段。许多现有的语义角色标注都是在完全句法分析的基础上进行的,但由于现阶段中文完全句法分析器性能比较低,基于自动完全句法分析的中文语义角色标注效果并不理想。因此该文将中文语义角色标注建立在了浅层句法分析的基础上。在句法分析阶段,利用构词法获得词语的"伪中心语素"特征,有效缓解了词语级别的数据稀疏问题,从而提高了句法分析的性能,F值达到了0.93。在角色标注阶段,利用构词法获得了目标动词的语素特征,细粒度地描述了动词本身的结构,从而为角色标注提供了更多的信息。此外,该文还提出了句子的"粗框架"特征,有效模拟了基于完全句法分析的角色标注中的子类框架信息。该文所实现的角色标注系统的F值达到了0.74,比前人的工作(0.71)有较为显著的提升,从而证明了该文的方法是有效的。 Semantic role labeling(SRL)is an important way to get semantic information.Many existing systems forSRL make use of full syntactic parses.But due to the low performance of the existing Chinese parser,the performance of labeling based on the full syntactic parses is still not satisfactory.This paper realizes SRL methods based on shallow parsing.In shallow parsing stage,this paper makes use of word formation to get fake head morpheme information,which alleviates the problem of data sparseness,and imporves the performance of the parser with the F-score up to 0.93.In the stage of semantic role labeling,this paper applies word formation to get morpheme information of the target verb,which describes the structure of word in fine granualrity,and provides more information for semantic role labeling.In addition,this paper also proposes a coarse frame feature as an approximation of the sub-categorization information existing full syntactic parsing.F-score of this semantic role labeling system has reached 0.74,a significant improvements over the best reported SRL performance(0.71) in the literature.
出处 《中文信息学报》 CSCD 北大核心 2011年第1期116-122,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60873156) 国家社科基金资助项目(09BYY032)
关键词 语义角色标注 浅层句法分析 语素 构词法 semantic role labeling shallow syntactic analysis morpheme word formation
  • 相关文献

参考文献10

  • 1Sun, Honglin, Daniel Jurafsky. Shallow Semantic Parsing of Chinese[C]//Proceedings of the Human Language Technology Conference Of the North American Chapter of the AssociatiOn for Computational Linguistics. Bnston. USA: 2004.
  • 2Nianwen Xue and Martha Palmer. Automatic semantic role labeling for Chinese verbs[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005.
  • 3Nianwen Xue. Labeling Chinese Predicates with Semantic roles [J]. Computational Linguistics, 2008,34 (2):225-255.
  • 4Sameer S. Pradhan, Wayne Ward, and James H. Martin. Towards robust semantic role labeling [J]. Comput. Linguist. 2008,34(2):289-310.
  • 5Mihai Surdeanu, Lluis Marquez, Xavier Carreras, and Pete Comas. Combination strategies for semantic role labeling. J. Artif. Intell. Res. (JAIR)[J]. 2007,29: 105-151.
  • 6于江德,樊孝忠,庞文博,余正涛.Semantic role labeling based on conditional random fields[J].Journal of Southeast University(English Edition),2007,23(3):361-364. 被引量:9
  • 7Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. An empirical study of chinese chunking[C]//Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions. Sydney, Australia:2006: 97-104.
  • 8Taku Kudo and Yuji Matsumoto. Use of support vector learning .for chunk identification[C]//Proceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational natural language learning. Morristown, NJ, USA. :2000, 142-144.
  • 9Taku Iqudo and Yuji Matsumoto. Chunking with support vector machines. [C]//NAACL '01: Second meeting of the North American Chapter of the Associ- ation for Computational Linguistics on Language technologies 2001, Morristown, NJ, USA:2001:1-8.
  • 10刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39

二级参考文献12

  • 1S.Pradhan,K.Hacioglu,V.Krugler,et al.Support vector learning for semantic argument classification[J].Machine Learning Journal,2005,vol.60,no.1-3,11-39.
  • 2N.Kwon,M.Fleischman,E.Hovy.Senseval automatic labeling of semantic roles using Maximum Entropy models[A].Senseval-3:Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text[C].Barcelona,Spain:Association for Computational Linguistics,2004,129 132.
  • 3P.Koomen,V.Punyakanok,D.Roth,et al.Generalized Inference with Multiple Semantic Role Labeling Systems[A].In:Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)[C].Ann Arbor,Michigan:Association for Computational Linguistics,2005,181 184.
  • 4N.Xue,M.Palmer.Annotating the Propositions in the Penn Chinese Treebank[A].In:Proceedings of the Second SIGHAN Workshop on Chinese Language Processing[C].Sapporo,Japan:2003,47 54.
  • 5M.Palmer,D.Gildea,P.Kingsbury.The Proposition Bank:An Annotated Corpus of Semantic Roles[J].Computational Linguistics,2005,31(1),71-106.
  • 6V.Punyakanok,D.Roth,W.Yih.The Necessity of Syntactic Parsing for Semantic Role Labeling[A].In:Proceedings of CoNLL-04[C].2004,1117-1123.
  • 7N.Xue,M.Palmer.Calibrating features for semantic role labeling[A].In:Proc.of the EMNLP-2004[C].Barcelona,Spain:2004.
  • 8N.Xue,M.Palmer.Automatic semantic role labeling for Chinese verbs[A].In:Proc.IJCAI2005[C].Edinburgh,Scotland:2005.
  • 9H.Sun and D.Jurafsky.Shallow semantic parsing of Chinese[A].In:Proceedings of NAACL 2004[C].Boston,USA:2004.
  • 10N.Xue,F.Xia.The Bracketing Guidelines for the Penn Chinese Treebank[D],IRCS Report 00-08 University of Pennsylvania,Oct 2000.

共引文献42

同被引文献169

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部