期刊文献+

钛铁矿型六方相ZnTiO_3的电子结构和光学性质(英文) 被引量:2

Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO_3
下载PDF
导出
摘要 分别采用基于密度泛函理论(DFT)的局域密度近似(LDA)和广义梯度近似(GGA)方法对钛铁矿型六方相ZnTiO3的电子结构进行了第一性原理计算,并在局域密度近似下计算了六方相ZnTiO3的光学性质,并将计算结果与实验数据进行了对比.结果表明,在局域密度近似下计算得到的结构参数更接近实验数据.理论预测六方相ZnTiO3属于直接带隙半导体材料,其禁带宽度(布里渊区Z点)为3.11eV.电子态密度和Mulliken电荷布居分析表明Zn―O键是典型的离子键而Ti―O键是类似于钙钛矿型ATiO3(A=Sr,Pb,Ba)的Ti―O共价键.在50eV的能量范围内研究了ZnTiO3的介电函数、吸收光谱和折射率等光学性质,并基于电子能带结构和态密度对光学性质进行了解释. The electronic structures of ilmenite(IL)-type hexagonal ZnTiO3 were investigated using the generalized gradient approximation(GGA) and local density approximation(LDA) based on density functional theory(DFT).The optical properties of ZnTiO3 were also calculated by the LDA method.The calculated results were compared with experimental data.Results show that the structural parameters obtained by the LDA calculation are rather close to the experimental values.IL-type hexagonal ZnTiO3 is a kind of direct bandgap(Eg=3.11 eV) semiconductor material at the Z point in the Brillouin zone.An analysis of the density of states(DOS) and the Mulliken charge population clearly reveal that the Zn―O bond is a typical ionic bond whereas the Ti―O bond,which is similar to the Ti―O bond in perovskites ATiO3(A=Sr,Pb,Ba),is covalent in character.Furthermore,the dielectric function,absorption spectrum,and refractive index were obtained and analyzed on the basis of electronic band structures and the DOS for radiation up to 50 eV.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第1期47-51,共5页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20876104,20771080) 山西省科技攻关项目(20090311082)资助~~
关键词 第一性原理 电子结构 光学性质 钛铁矿型六方相ZnTiO3 First-principles Electronic structure Optical property Ilmenite-type hexagonal ZnTiO3
  • 相关文献

参考文献2

二级参考文献54

  • 1Eom, C. B.; Marshall, A. F.; Laderman, S. S.; Jacowitz, R. D.; Geballe, T. H. Science, 1990, 249:1549.
  • 2Shen, H.; Song, Y.; Gu, H.; Wang, P.; Xi, Y. Mater. Lett., 2002, 56:802.
  • 3Hara, T.; Ishiguro, T. Sens. Actuator B-Chem., 2009, 136:489.
  • 4Hara, T.; Ishiguro, T.; Wakiyab, N.; Shinozakic, K. Mater. Sci. Eng. B, 2009, 161:142.
  • 5Lee, S. W.; Kwon, O. S.; Han, J. H.; Hwang, C. S. Appl. Phys. Lett., 2008, 92:222903.
  • 6Fix, T.; Bali, R.; Stelmashenko, N.; Blarnire, M. G. Solid State Commun., 2008, 146:428.
  • 7Zhu, X. B.; Liu, S. M.; Hao, H. R.; Li, X. H.; Song, W. H.; Sun, Y. P. Physica C, 2005, 418:59.
  • 8Higuchi, T.; Tsukamoto, T.; Kobayashi, K.; Ishiwata, Y.; Fujisawa, M.; Yokoya, T.; Yamaguchi, S.; Shin, S. Phys. Rev. B, 2000, 61: 12860.
  • 9Marina, O. A.; Canfield, N. L.; Stevenson, J. W. Solid State lonics, 2002, 149:21.
  • 10Wang, H. H., Chen, F.; Dai, S. Y.; Zhao, T.; Lu, H. B.; Cui, D. F.; Zhou, Y. L.; Chen, Z. H.; Yang, G. Z. Appl. Phys. Lett., 2001, 78: 1676.

共引文献14

同被引文献330

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部