期刊文献+

回响状态网络输出连接权重的一个稳定训练方法 被引量:5

Stable training method for output connection weights of echo state networks
原文传递
导出
摘要 鉴于在回响状态网络(ESN)的应用中常使用Wiener-Hopf方程学习输出连接权重,但该方法难以保证自治ESN的稳定性,首先分析了导致该稳定性丧失的原因,提出并证明了自治ESN具备Lyapunov稳定性的一个充分条件;然后将输出连接权重学习问题转化为一个非线性约束的最优化问题,并采用粒子群优化算法求解.仿真结果表明,所提方法既能确保ESN获取高精度的预测输出,又能保ESN的Lyapunov稳定性. In applications of echo state network (ESN), the Wiener-Hopf equation is usually used to learn the ESN's output connect weights, but can hardly ensure the stability of the autonomous ESNs. Therefore, The reasons for the loss of the stability are analyzed firstly, and a sufficient condition of the Lyapunov stability for the autonomous ESNs is proposed and proved. Then the output connect weight learning problem is. translated into an optimization problem with a nonlinear constraint. Particle swarm optimization algorithm is employed to solve the optimization problem. Finally, the simulation results show that the method proposed can not only result in high-precision prediction outputs of the ESN, but also ensure its Lyapunov stability.
出处 《控制与决策》 EI CSCD 北大核心 2011年第1期22-26,共5页 Control and Decision
基金 国家自然科学基金项目(60875043) 国家重点基础研究发展计划项目(2007CB311006)
关键词 神经网络 回响状态网络 LYAPUNOV稳定性 粒子群最优化 neural network echo state network Lyapunov stability particle swarm optimization
  • 相关文献

参考文献9

  • 1Jaeger H, Haass H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
  • 2Jang J S R, Sun C T, Mizutani E. Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence[M]. New Jersey: Prentice Hall, 1997.
  • 3Michel A N, Liu D. Qualitative analysis and synthesis of recurrent neural networks[M]. New York: Marcel Dekker, 2002.
  • 4Jaeger H, Lukosevicius M, Popovici D, et al. Optimization and applications of echo state networks with leakyintegrator neurons[J]. Neural Networks, 2007, 20(3): 335- 352.
  • 5Jaeger H. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach[R]. Sankt Augustin: GMD Forschungszentrum Informationstechnik, 2002.
  • 6Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE, 1995: 1942-1948.
  • 7Clerc M, Kennedy J. The particle swarm: Explosion, stability and Convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8Xue Y,. Yang L, Haykin S. Decoupled echo state networks with lateral inhibition[J]. Neural Networks, 2007, 20(3): 365-376.
  • 9Wiestra D, Gomez F, Schmidhuber J. Modeling systems with internal state using evolino[C]. Proc of GECCO. New York: ACM, 2005: 1795-1802.

同被引文献34

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测[J].物理学报,2007,56(1):43-50. 被引量:23
  • 3史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 4Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
  • 5Herbert J. The echo state approach to analysing and training recurrent neural networks[R]. Sankt Augustin: German National Research Center for Information Technology, 2001, 12(8): 1-43.
  • 6Li D, Han M, Wang J. Chaotic time series prediction based on a novel robust echo state network[J]. IEEE Trans on Neural Networks and Learning Systems, 2012, 23(5): 787-799.
  • 7Pan Y, Wang J. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks[J]. IEEE Trans on Industrial Electronics, 2012, 59(8): 3089-3101.
  • 8SkowronskiMD, Harris J G. Automatic speech recognition using a predictive echo state network classifier[J]. Neural Networks, 2007, 20(3): 414-423.
  • 9Chen Y, Hu J, Kasabov N, et al. NeuCubeRehab: A pilot study for EEG classification in rehabilitation practice based on spiking neural networks[J]. Springer Lecture Notes in Computer Science, 2013, 8228(1): 70-77.
  • 10Xue Y, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition[J]. Neural Networks, 2007, 20(3): 365-376.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部