期刊文献+

增益导引折射率反导引大模场光纤激光器特性分析

Characteristic analysis of gain guided index antiguided large-mode-area fiber lasers
下载PDF
导出
摘要 为了研究增益导引折射率反导引光纤激光器的功率分布及输出特性,根据此类光纤的结构原理和特点,建立了端面抽运的增益导引折射率反导引光纤激光器的基模光速率方程,推导了避免激发高阶模的增益阈值判决条件,并运用弦切法和Runge-Kutta法数值求解了该速率方程,分析了光纤长度、腔镜反射率等参量对基模输出功率的影响。采用芯径为100μm、折射率差为-0.00094、掺杂Yb^(3+)浓度为5×10^(26)/m^3的增益导引折射率反导引光纤构建激光器时,要使得整段光纤不激发高阶模,需使光纤长为3cm、两腔镜反射率为0.98和0.3,当抽运功率为30W时,可获得2.42W的大模场单模输出,斜率效率约为8.1%。结果表明,优化设计腔镜反射率和光纤长度后,采用较短的大模场高掺杂增益导引折射率反导引光纤可获得一定效率的基模输出。 In order to study the power distribution and output characteristics of gain guided index antiguided (GG-IAG) fiber lasers, rate equations of basic model light of double-clad GG-IAG fiber lasers with end-pumping were established, based on the principle and structure characteristics of GG-IAG fibers. After solving the rate equations with tangential method and Runge- Kutta method, power distribution and output characteristics of basic model light were gained. The results show that parameters of fiber and laser cavity, such as fiber length, output lens reflectivity, have significant influence on gain distribution and output power of basic model light. When using a GG-IAG fiber with a radius of 100μm, index step -0. 00094 and concentration of ions 5×10^26/m^3 to construct a GG-IAG fiber laser, fiber length needs to be 3cm and output lens refleetivity is 0. 98 and 0. 3 respectively, in order to restrain LP, model, and while inputing a 30W pmnp-light, 2.42W single-mode laser with large-mode- area can be obtained. The analysis shows that by optimally designing cavity mirror reflectivity and fiber length, fundamental mode output with certain efficiency can be obtained in a short length large-mode-area highly doped GG-IAG fiber.
出处 《激光技术》 CAS CSCD 北大核心 2011年第1期25-28,78,共5页 Laser Technology
关键词 激光技术 增益导引折射率反导引光纤 速率方程 数值分析 laser technique gain guided index antiguided fiber rate equations numerical analysis
  • 相关文献

参考文献1

二级参考文献12

  • 1邓元龙,姚建铨,阮双琛,王鹏.高功率光子晶体光纤激光器及其关键技术[J].激光技术,2005,29(6):596-598. 被引量:6
  • 2KIM J, DUPRIEZ P, CODEMARD C,et al. Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a Wtype core with fundamental mode cut-off [ J ]. Optics Express,2006, 14( 12 ) :5103-5113.
  • 3KOBYAKOV A, KUMAR S, CHOWDHURY D, et al. Design concept for optical fibers with enhanced SBS threshold [ J ]. Optics Express, 2005,13 (14) :5338-5346.
  • 4FERMANN M E. Single-mode excitation of muhimode fibers with ultrashort pulses [ J]. Opt Lett, 1998,23 (1) :52-54.
  • 5FINI J. Design of solid and microstructure fibers for suppression of higher-order modes [ J ]. Optics Express,2005,13 (9) :3477-3490.
  • 6LAVOUTE L, ROY P, DESFARGES-BERTHELEMOT A, et al. Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration [ J ]. Optics Express,2006,14 (7) : 2994 -2999.
  • 7TSUCHIDA Y, SAITOH K, KOSHIBA M. Design of single-moded holey fibers with large-mode-area and low bending losses:the significance of the ring-core region [ J ]. Optics Express, 2007,15 (14) : 1794 - 1803.
  • 8SIEGMAN A E. Propagating modes in gain-guided optical fibers [ J]. J OS A,2003 ,A20(8) :1617-1628.
  • 9CHEN Y,SUDESH V,MCCOMB T,et al. Lasing in gain-guided index antiguided fiber [J]. J O S A,2007,B24(8) :1683-1688.
  • 10SUDESH V, MCCOMB T, CHEN Y,et al. Diode-pumped 200μm diameter core, gain-guided, index-antiguided single mode fiber laser [ J ]. Appl Phys,2008, B90 (3/4) :369-372.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部