期刊文献+

面向体绘制图像的直接体对象抠取

Direct Volume Object Cutout on Volume Rendering Images
下载PDF
导出
摘要 针对三维体对象抠取的相关工作中存在的尚多不足,提出一种体对象抠取算法.首先计算出与用户勾画结果相关的三维数据点,然后基于K-means聚类方法标记出高置信度的属于目标对象和无关对象的三维数据点,并以此作为种子点,借助基于能量优化的图割算法最终得到正确的体对象抠取结果.用户只需直接在体绘制的二维颜色叠加结果上通过简单的勾画指定目标对象和无关对象,即可抠取出感兴趣的体结构.最后通过实验说明了该算法的有效性. Although various segmentation or cutout schemes have been well-developed for both 2D and 3D images,it remains a challenging problem to cutout an object from a volume dataset in an intuitive and convenient fashion.Most of existing volume cutout algorithms operate on 2D slice images,and extend the extracted information to the 3D counter.In this paper,we propose a novel volume object cutout algorithm which allows users to select 3D points by drawing strokes onto the volume rendering images.A set of 3D points is collected by casting through the drawn strokes,followed by a refinement process based on the k-mean clustering method to obtain high confidential result.Taking these refined points as seed points,the graph cut algorithm is employed to accurately and quickly extract the intended object.Experimental results demonstrate the effectiveness of our algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第1期170-176,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60773143 90715043) 国家"八六三"高技术研究发展计划(2010AA186002 2007AA040401) 中日NSFC-JST双边合作研究项目(51021140004)
关键词 体对象抠取 体绘制 抠像 能量最小化 volume object cutout volume rendering image matting energy minimization
  • 相关文献

参考文献19

  • 1Yuan X R, Zhang N, Nguyen M X, et al. Volume cutout [J]. The Visual Computer, 2005, 21(8/10): 745-754.
  • 2Adobe photoshop user guide [M]. San Jose: Adobe Systems lneorp. 2000.
  • 3Mortensen E N, Barrett W A. Intelligent scissors for image composition [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1995:191-198.
  • 4Mortensen E N, Barrett W A. Toboggan-based intelligent scissors with a four-parameter edge model [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D C: IEEE Computer Society Press, 1999:452-458.
  • 5Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (11) :1222-1239.
  • 6Boykov Y, Kolmogorov V. An experimental comparison of rain cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 2004, 26(9) : 1124-1137.
  • 7Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159.
  • 8Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images [C] //Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2001: 105- 112.
  • 9Li Y, Sun J, Tang C K, et al. Lazy snapping [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2004:303-308.
  • 10Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph cuts [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2004:309-314.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部