期刊文献+

光子带隙谐振腔回旋管振荡器的自洽非线性理论 被引量:4

Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity
原文传递
导出
摘要 定义了光子带隙谐振腔(photonic-band-gap cavity,PBGC)的等效半径,论证了使用该半径将PBGC等效为具有模式选择性的金属圆柱谐振腔的有效性,揭示了其在PBGC设计过程中的指导性作用.基于等效半径的运用,建立起光子带隙谐振腔回旋管振荡器(PBG回旋管)的自洽非线性理论,并对工作于TE32模的PBG回旋管作了理论分析和数值计算.目前的研究表明:高频电磁场沿角向呈行波或驻波的不同极化形式对PBG回旋管的注-波互作用过程具有较大的影响;较之电子回旋基波,该器件中二次谐波与TE-32模式波的互作用效率更高,提示由于PBGC优秀的选模能力,可望实现回旋管中高阶横向电磁模与高次电子回旋谐波的有效耦合,为相关研究提供了新的线索. The effective radius of photonic-band-gap cavity (PBGC) is defined,the validity of using it to treat PBGC as a mode selective cylindrical metal cavity is demonstrated,the guiding role of it in the design of PBGC is revealed,and a self-consistent nonlinear theory is established for gyrotron oscillator with PBGC ( PBG gyrotron) based on it. The results of theoretical analysis and numerical calculation show that the azimuthal polarized form (traveling wave or standing wave) of RF field has an obvious effect on the beam-wave interacting process and the device operating at second harmonic can achieve higher electron efficiency than that working at fundamental wave under TE-32 mode,which means PBG gyrotron is capable of operating at both high order electromagnetic mode and high order electronic cyclotron harmonic effectively owing to the excellent mode selective ability of PBGC. This gives a new clue to the research of gyrotron oscillator.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第1期223-230,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60871063)资助的课题~~
关键词 光子带隙谐振腔 等效半径 回旋管 自洽非线性理论 photonic-band-gap cavity effective radius gyrotron self-consistent nonlinear theory
  • 相关文献

参考文献18

  • 1Carmel Y, Chu K R, Dialetis D, Fliflet A W, Read M E, Kim K J, Arfin B, Granatstein V L 1982 Int. J. IRMM. Waves 3 645.
  • 2Whaley D R, Tran M Q, Tran T M, Antonsen T M 1994 IEEE Trans. Plasma Sci. 22 850.
  • 3Chu K R 1978 Phys. Fluids 21 2354.
  • 4Yablonovitch E, Gmitter T J, Leung K M 1991 Phys. Rev. Lett. 67 2295.
  • 5Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Spl. Topics 4 042001.
  • 6Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960.
  • 7Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801.
  • 8郝保良,刘濮鲲,唐昌建.二维非正交坐标斜方格金属光子带隙结构[J].物理学报,2006,55(4):1862-1867. 被引量:15
  • 9高喜 杨梓强 侯钧 亓丽梅 兰峰 史宗君 李大治 梁正.物理学报,2009,58:1105-1105.
  • 10刘畅,罗尧天,唐昌建,刘濮鲲.回旋管光子带隙谐振腔冷腔电磁模式分析[J].物理学报,2009,58(12):8174-8179. 被引量:7

二级参考文献4

共引文献18

同被引文献93

  • 1唐昌建,杨中海,刘濮鲲.高功率回旋管锁相[J].强激光与粒子束,1995,7(1):49-56. 被引量:3
  • 2郝保良,刘濮鲲,唐昌建.二维非正交坐标斜方格金属光子带隙结构[J].物理学报,2006,55(4):1862-1867. 被引量:15
  • 3张浩,赵建林,张晓娟,底楠.二维磁性光子晶体及其模场分析[J].物理学报,2007,56(6):3546-3552. 被引量:4
  • 4Flechk L,Danly B G,Jory H R,et al.Characteristics and applications of fast-wave gyrodevices[J].Proc IEEE,1999,87(5).752.
  • 5Granatstein V L,Nusinovich N C,Blank M.Gyrotron oscillators and amplifiers in high-power microwave sources and technologies[M].New York:IEEE Press,2001.
  • 6Litvak A G.High power gyrotrons.development and applications.2008 33 rd International conference on infrared[C].Pasadena:Institute of Appllied Physics,2008:242.
  • 7Cauffman S,Cahalan P,Blank M.Recent test results on a 95 GHz,multi-megawatt gyrotron[C]// 2009 IEEE 36 th International Conference on Plasma Science (ICOPS).USA,San Diego:IEEE Press,2009.
  • 8Rzesnicki T,Piosczyk B,Thumm M.170 GHz,2 MW coaxial cavity gyrotron for ITER-recent results obtained with a short pulse tube[C]//2009 IEEE International Vacuum Electronics Conference (IVEC).Italy,Rome-.Plasma Science,2009.
  • 9Thumm M.History,presence and future of gyrotrons[C]// 2009 IEEE International Vacuum Electronics Conference.Italy,Rome:IEEE Press,2009.
  • 10Qi L M,Yang Z Q,Gao X.Design of photonic crystal resonant cavity using overmoded dielectric photonic band gap structures[C]// Progress in Electromagnetics Research Symposium (Piers 2007),Beijing:Piers Online,2007.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部