期刊文献+

晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究 被引量:1

Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects
原文传递
导出
摘要 用分子动力学方法研究了纳米多晶铝在冲击加载下的冲击波阵面结构及塑性变形机理.模拟研究结果表明:在弹性先驱波之后,是晶界间滑移和变形主导了前期的塑性变形机理;然后是不全位错在界面上成核和向晶粒内传播,然后在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机理.冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界.这个由两阶段塑性变形过程导致的时序性塑性波阵面结构是过去未见报道过的. The shock front structure and the plastic deformation of nanocrystalline aluminum under shock loading are investigated by using molecular dynamics simulations. The simulation results show that: after the elastic wave was generated,the grain boundary sliding and deformation dominated the early plastic deformation mechanisms,then the partial dislocations were nucleated at the deformed grain boundaries and spread within the grains,finally the process of stacking faults,deformation twins and full dislocation formation in the grain dominated the latter stage of the plastic deformation. The structural characteristics after the shock front swept over is that the stacking faults and the deformation twins are left in grains,and the majority of the full dislocations are annihilated at the opposite grain boundaries. It is reported for the first time that the shock front structure reflects the time sequence of two different plastic deformation mechanisms in nanocrystalline aluminum.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第1期467-472,共6页 Acta Physica Sinica
基金 冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C6703010804 9140C6701010902) 中国工程物理研究院科学技术发展基金重点项目(批准号:2007A01004)资助的课题~~
关键词 晶界 塑性变形 冲击波阵面 分子动力学 grain boundary plastic deformation shock front molecular dynamics
  • 相关文献

参考文献33

  • 1Zhakhovskii V V, Zybin S V, Nishihara K, Anisimov S I 1999 Phys. Rev. Lett. 83 1175.
  • 2Jones O E, Holland J R 1968 Acta Metall. 16 1037.
  • 3Chhabildas L C, Asay J R 1979 J. Appl. Phys. 50 2749.
  • 4Gahagan K T, Moore D S, Funk D J, Rabie R L, Buelow S J Nicholson J W 2000 Phys. Rev. Lett. 85 3205.
  • 5Holian B L 2003 High-Pressure Shock Compression of Solids VI edited by Horie Y, L Davison, and N N Thadhani (New York: Springer).
  • 6Meyers M A 1977 Mater. Sci. Eng. 30 13.
  • 7Meyers M A, Carvalho M S 1976 Mater. Sci. Eng. 24 5.
  • 8Barber J L, Kadau K 2008 Phys. Rev. B 77 144106.
  • 9Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 4.
  • 10Holian B L, Lomdahl P S 1998 Science 280 4.

二级参考文献28

  • 1罗晋,祝文军,林理彬,贺红亮,经福谦.单晶铜在动态加载下空洞增长的分子动力学研究[J].物理学报,2005,54(6):2791-2798. 被引量:22
  • 2耿浩然,孙春静,杨中喜,王瑞,吉蕾蕾.金属熔体黏度与结构相关性的分子动力学模拟[J].物理学报,2006,55(3):1320-1324. 被引量:12
  • 3Mishin Y, Farkas D, Mehl M J, Papconstantopoulos D A 1999 Mat. Res. Soc. Syrnp, Proc. 538 535
  • 4Young D A, McMahan A K, Ross M 1981 Phys. Rev. B 24 5119
  • 5王海燕 祝文军 宋振飞 刘绍军 陈向荣 贺红亮.物理学报,2008,(57):3703-3703.
  • 6Allen M P, Tildesley D J 1990 Computer Simulation of Liquids (Oxford: Oxford University Press) p341
  • 7Holian B L, Lomdahl P S 1998 Science 280 2085
  • 8Hirth J P, Lothe J 1982 Theory of Dislocations (New York: Wiley) p306-320
  • 9Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
  • 10Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104

共引文献20

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部