期刊文献+

应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型 被引量:4

Model of electron mobility in inversion layer of strained Si/Si_(1-x)Ge_x n type metal-oxide-semiconductor field-effect transistors
原文传递
导出
摘要 为了描述生长在弛豫Si1-xGex层上应变Sin型金属氧化物半导体场效应晶体管(nMOSFETs)反型层中电子迁移率的增强机理,提出了一种新型的、基于物理的电子迁移率模型.该模型不仅能够反映声学声子散射迁移率、表面粗糙度散射迁移率与垂直于半导体-绝缘体界面的电场强度之间的依赖关系,而且也能解释不同的锗组分对两种散射机理的抑制情况从而引起电子迁移率增强的机理.该模型数学表达式简单,可以模拟任意锗组分下的迁移率.通过数值分析验证得出,该模型与已报道的实验数据结果相符合.同时该模型能够被嵌入到ISE模拟器中,获得与原模拟器内置模型相一致的结果. In order to describe the electron mobility enhancement in inversion layer in strained-Si on Si1-x Gex n type metal-oxide-semiconductor field-effect transistors (nMOSFETs),a new physically-based electron mobility model is presented in the paper. This model can not only show the dependence of acoustic phonon-limited mobility and surface roughness-limited mobility on transverse electrical field normal to the semiconductor-insulator interface,but also explains the electron mobility enhancement mechanism due to scattering suppression caused by germanium (Ge) content. The expression of the new model is simple and can simulate the mobility for any Ge content. Numerical analysis results show that this model fits the reported experimental data very well. In addition,this model can be easily included in the device simulator ISE and gives good agreement with simulated results of device simulator with built-in model.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第1期565-569,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60976068,60936005) 教育部科技创新工程重大项目培育基金(批准号:708083) 中央高校基本科研业务费专项基金(批准号:200807010010)资助的课题~~
关键词 应变Si/SiGe 电子迁移率 反型层 模型 strained-Si /SiGe electron mobility inversion layer model
  • 相关文献

参考文献19

  • 1Vogelsang T, Hofman K R 1993 Appl. Phys. Lett. 63 186.
  • 2张志锋 张鹤鸣 胡辉勇 宣荣喜 宋建军.物理学报,2009,58:4948-4948.
  • 3SongJ J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827.
  • 4Leitz C W, Currie M T, Lee M L, Cheng Z Y 2002 J. Appl. Phys. 92 3745.
  • 5Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R 1991 Appl. Phys. Lett. 59 811.
  • 6Welser J, Hoyt J L, Gibbons J F 199d IEEE Electron Devices Lett. 15 100.
  • 7Miyata H, Yamada T, Ferry D K 1993 Appl. Phys. Lett. 62 2661.
  • 8成步飞 姚飞 薛春来 张建国 李传波 毛容伟 左玉华 罗丽萍 王启明.物理学报,2005,54:4350-4350.
  • 9LinG J, LaiH K, LiC, Chen SY, YuJZ2008 Chin. Phys. B 17 3479.
  • 10Lombardi C, Manzini S, Saporito A, Vanzi M 1988 IEEE Transactions on Computer-Aided Design 7 1164.

共引文献5

同被引文献72

  • 1于杰,王茺,杨洲,陈效双,杨宇.绝缘层上应变SiGe沟道p-MOSFET电学特性模拟分析[J].红外与毫米波学报,2013,32(4):304-308. 被引量:1
  • 2吴贵斌,叶志镇,赵星,刘国军,赵炳辉.超高真空CVD选择性外延锗硅及其电学特性[J].浙江大学学报(工学版),2006,40(12):2041-2043. 被引量:2
  • 3张志锋 张鹤鸣 胡辉勇 宣荣喜 宋建军.物理学报,2009,58:4948-4948.
  • 4梁俊华,郭冰,刘旭.利用同质缓冲层溅射生长c轴择优取向氮化铝薄膜[J].浙江大学学报(工学版),2007,41(9):1512-1515. 被引量:1
  • 5MIZUNO T, TAKAGI S, SUGIYAMA N, et al. Elec- tron and hole mobility enhancement in strained-Si MOS- FET-s on SiGe-on-insulator substrates fabricated by SI- MOX technology [J]. IEEE Electron Device Letter, 2000, 21 (5): 230-232.
  • 6LIU W, ASHEGHI M. Thermal modeling of self-heat- ing in strained silicon MOSFETs [C] // Proceeding of IEEE ITHERM Conference. [S. l. ]: IEEE, 2004: 605.
  • 7BRESSON N, CRISTOLOVEANU S, MAZURE C, et al. Integration of buried insulators with high thermal conductivity in SOI MOSFETs: thermal properties and short channel effects [J]. Solid-State Electronics, 2005, 49(9) : 1522 - 1528.
  • 8KUMAR M J, SIVA M. The ground plane in buried oxide for controlling short-channel effects in nano scale SOI MOSFETs [J]. IEEE Transactions on Electron Devices, 2008, 55(6) : 1554 - 1557.
  • 9XIONG W, RAMKUMAR K, JANG S J, et al. Self aligned ground-plane FD SOI MOSFET [C]// Proceed- ing of IEEE International SOI Conference. [S. l. ]: IEEE, 2002:23 - 24.
  • 10YANAGI S, NAKAKUBO A, OMURA Y. Proposal of partial-ground-plane (PGP) silicon-on-insulator (SOI) MOSFET for deep sub-0.1-μm channel regime [J]. IEEE Electron Device, 2001, 22(6): 278- 280.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部