期刊文献+

单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应

Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect
原文传递
导出
摘要 利用杂化密度泛函理论,研究了以甲基、醇基、羧基为末端基团的烷烃硫醇分子与金电极形成分子结的过程,得到了分子结的几何结构与外加压力的关系.并在此基础上,利用弹性散射格林函数方法研究了烷烃硫醇分子的电输运性质.研究结果表明,对于C11S分子来说,当两电极距离大于2.1nm时,该分子结断裂;对于C11SOH和C10SCOOH来说,相应的分子结断裂的电极距离基本相同(2.15nm).在相同的外加压力(4.0nN)下,C11S分子的导电能力最强,其次是C11SOH分子,而C10SCOOH分子的导电能力最差.随着压力的增加,三种分子结的电导呈现出单调地增加,且在相同的外加压力下,三种分子导电能力的强弱没有改变.理论计算结果与实验结果定性地符合. The hybrid density functional theory is used to study formation of the junction of alkanemonothiol molecules with different terminal groups. The relationship between geometric structures of the molecular junction and the external force is obtained. On the basis of the relationship, the electronic transport properties of the molecular junctions under different external forces are investigated using the elastic-scattering molecular junction is broken when the distance of the two Green' s function method. The results show that the CH S electrodes is larger than 2.1 nm. While for CH SOH and C10SCOOH molecular junctions, their critical distances are similarly 2. 15 nm. Taking the same external force, we find that the CH S molecule has the largest conducting ability, and the C10SCOOH molecule has the smallest conducting ability. Furthermore, the conductance of the three molecular junctions is monotonically enhanced with the increase of the external force. The numerical results are consistent with the experimental findings qualitatively.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第1期611-616,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10804064 10974121)资助的课题~~
关键词 压力 末端基团 烷烃硫醇分子 电输运性质 external force, terminal group, electronic transport property, alkanemonothiol molecule
  • 相关文献

参考文献5

二级参考文献84

  • 1陈永军,赵汝光,杨威生.长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究[J].物理学报,2005,54(1):284-290. 被引量:6
  • 2胡海龙,张琨,王振兴,王晓平.自组装硫醇分子膜电输运特性的导电原子力显微镜研究[J].物理学报,2006,55(3):1430-1434. 被引量:11
  • 3[1]Allara D L, Dunbar T D, Weiss P S, Bumm L A, Cygan M T, Tour J M, Reine rt h W A, Yao Y, Kozaki M and Jones L 1998 Molecular Electronics:Science an d Tec hnology edited by Aviram A and Ratner M A, Annals of The New York Academy of S cience 852(New York Academy of Science, New York) 349
  • 4[2]Bumm L A, Arnold J J, Cygan M T, Dunbar T D, Burgin T P, Jones L, Allar a D L, Tour J M and Weiss P S 1996 Science 271 1705
  • 5[3]Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
  • 6[4]Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550Chen J, Wang W, Reed M A, Rawlett A M, Price D W and Tour J M 2000 Appl.Phys.Lett. 77 1224
  • 7[5]Reed M A and Tour J M 2000 Sci.Am. 6 45
  • 8[6]Mujica V, Kemp M and Ratner M A 1994 J.Chem.Phys. 101 6 849,6856
  • 9[7]Tian W, Datta S, Hong S, Reifenberger R, Henderson J I and Kubiak C P 1 998 J.Chem.Phys. 109 2874
  • 10[8]Ventra M D,Pantelides S T and Lang N D 2000 Phys.Rev.Lett. 84 979

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部