期刊文献+

基于多背景杂波分布模型的自适应CFAR检测 被引量:5

The Adaptive CFAR Detection Algorithm Based on the Multiple Background Clutter Distribution Model
下载PDF
导出
摘要 针对现有的CFAR(Constant False Alarm Rate,恒虚警)算法采用全局建模,在待检测的所有区域采用同种背景杂波分布模型,导致使用的模型在不适应区域失配,使CFAR检测性能下降的现象,本文提出一种基于多背景杂波分布模型的自适应CFAR检测算法。该方法根据背景区域的不同统计特性即统计方差和均值比来判断区域类型,采用CFAR检测器自适应地根据区域类型选择相应的背景杂波分布模型,即在均匀区域采用高斯分布;在有杂波边缘的区域,采用韦布尔分布以消除杂波边缘的影响;在有多目标干扰的区域采用G0分布以排除干扰目标,避免相邻目标的相互屏蔽效应。实验结果表明,此方法使检测结果得到明显提高。 Global modeling is adopted in existing Constant False Alarm Rate (CFAR) algorithms, and the same distribution model is used which estimates the background clutter to detect the whole area. But practical ground covers complex types, and different ground area has its most suitable backgrounds model. The used model is not fit in some regional, making higher loss of CFAR, bringing down the test performance. So an algorithm is presented which judged the areas according to the different characteristics of background, such as statistical variance and mean ratio. In this way. CFAR detector could select the distribution model on the basis of the regional type automatically and get the best detection results: that is, choosing Gaussian distribution in an uniform region. Weibull distribution is used to eliminate the influence while in a clutter edge, and Go distribution is used to eliminate the obstacles targets while in a multiple targets interfering region, avoiding mutual shielding effects of adjacent targets.
出处 《光电工程》 CAS CSCD 北大核心 2011年第1期117-126,共10页 Opto-Electronic Engineering
基金 国家自然科学基金(60905016 60805013) 十一五国防预研基金
关键词 CFAR 高斯分布 杂波边缘 韦布尔分布 多目标区域 CFAR Gaussian distribution clutter edge Weibull distribution multiple targets
  • 相关文献

参考文献10

  • 1Novak L M. Performance of a high-resolution polarimetric SAR automatic target recognition system [J]. Lincoln Laboratory Journal(S0896-4130), 1993, 6(1): 11-23.
  • 2Oliver C J, Quegan S. Understanding synthetic aperture radar Images [M]. Artech House Inc. 685 Canton Street, Norwood, MA02062. 1998.
  • 3Kuttikkad S, Chellappa R. Non-Gaussian CFAR Techniques for Target Detection in High Resolution SAR Images Proceedings [C]//IEEE International Conference on Image Processing, 1994(ICIP-94), Austin, TX, USA, Nov 13-16, 1994, 1:910-914.
  • 4Salazar II J S. Detection Schemes for Synthetic Aperture Radar Imagery Based On a Bate Prime Statistical Model [D]. The University of New Mexico, 1999.
  • 5Blacknell D. Target Detection in Correlated SAR Clutter [J]. lEE Proc, Radar Sonar and Navigation(S1350-2395), 2000, 147(1): 9-16.
  • 6Bucciarelli T, Lombardo P, Tamburrini S. Optimum CFAR Detection Against Compound Gaussian Clutter with Partially Correlated Texture [J]. lEE Proc, Radar Sonar and Navigation(S1350-2395), 1996, 143(2): 95-104.
  • 7Rohling H. Radar CFAR Thresholding in Clutter and Multiple Target Situations [J]. IEEE Trans. On AES(S0018-9251), 1983, 19(3): 608-621.
  • 8高贵,周蝶飞,蒋咏梅,匡纲要.SAR图像目标检测研究综述[J].信号处理,2008,24(6):971-981. 被引量:25
  • 9LI Jian, Zelnio E G Target Detectin with Synthetic Aperture Radar [J]. IEEE Trans.on AES(S0018-925!), 1997, 32(2): 613-627.
  • 10林宏津.合成孔径雷达图像目标检测与优化搜索[D].成都:四川大学,2005:14—18.

二级参考文献108

  • 1张翠,邹涛,王正志.一种高分辨率SAR图像快速目标检测算法[J].遥感学报,2005,9(1):45-49. 被引量:7
  • 2方学立,梁甸农,董臻.基于位置相关的SAR图像中分布式目标检测[J].电子与信息学报,2006,28(2):350-353. 被引量:2
  • 3W. Phillips, R. Chellappa. Target Detection in SAR: Parallel Algorithms, Context Extraction, and Region Adaptive Techniques. SPIE, 1997,3070:76-87.
  • 4M. Brizi, et al. Exploiting The Shadow Information to Increase The Target Detection Performance in SAR Images. Intern. Conf. on Radar Systems, Radar 99-Brest( France), 1999.
  • 5H. Leung, et al. Detection of Small Objects in Clutter Using a GA-RBF Neural Network. IEEE Trans. on AES. ,2002, 38(1) :98-118.
  • 6G. A. Lampropoulos, H. Leung. On CFAR Detection of Small Man Made Targets Using Chaotic and Statistical CFAR Detectors. SPIE, 1999,3809:29-41.
  • 7L. I. Perlovsky, W. H. Schoendorf. Model-Based Neural Network for Target Detection in SAR Images. IEEE Trans. on IP. , 1997,6 ( 1 ) :203-216.
  • 8L. K. Yen. Focus of Attention for Millimeter and Ultra Wideband Synthetic Aperture Radar Imagery. University of Florida, Doctor' s Dissertation, 1998.
  • 9J. G. Landowski, R. S. toe. Target Cluster Detection in Cluttered Synthetic Aperture Radar Imagery. SPIE, 1989, 1099:9-16.
  • 10L. M. Kaplan. Improved SAR Target Detection via Extended Fractal Features. IEEE Trans. on AES. ,2001,37(2) : 436-450.

共引文献25

同被引文献65

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部