期刊文献+

增强稀疏编码的超分辨率重建(英文) 被引量:2

Super-resolution Reconstruction Based on Improved Sparse Coding
下载PDF
导出
摘要 本文提出一种基于稀疏字典编码的超分辨率方法。该方法有效地建立高、低分辨率图像高频块间的稀疏关联,并将这种关联作为先验知识来指导基于稀疏字典的超分辨率重建。较超完备字典,稀疏字典对先验知识的表达更紧凑、更高效。字典训练过程中,本文选用高频信息作为高分辨率图像的特征,更有效地建立高、低分辨率图像块间的稀疏关联,所需的训练样本更少。优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算效率。采用自然图像进行实验,与其它基于学习的超分辨率算法相比,重建图像的质量更优。 A super-resolution method based on sparse dictionary is presented. The method efficiently builds sparse association between high-frequency components of HR image patches and LR image feature patches, and defines the association as a prior knowledge to guide super-resolution reconstruction based on sparse dictionary. Compared with overcomplete dictionary, sparse dictionary is more compact and effective to express the prior knowledge. We choose the high-frequency component of the HR image patch as its feature for dictionary training, which builds the sparse association between LR image patches and HR ones with better efficiency and less training examples. Sparse K-SVD algorithm is adopted as optimization method to improve the computation efficiency. Experiments with natural images show that our method outperforms several other learning-based super-resolution algorithms.
出处 《光电工程》 CAS CSCD 北大核心 2011年第1期127-133,共7页 Opto-Electronic Engineering
基金 国家 973 项目(2007CB714406) 国家博士后基金(20080441198) 电子科技大学青年科技基金重点项目资助(JX0804)
关键词 超分辨率 基于学习 稀疏编码 稀疏字典 稀疏K—SVD super-resolution learning-based sparse coding sparse dictionary sparse K-SVD
  • 相关文献

参考文献14

  • 1BAKER S, KANADE T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2002, 24(9): 1167-1183.
  • 2PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine(S1053-5888), 2003, 20(3): 21-36.
  • 3袁建华.调和映射约束下的超分辨率图像重建[J].光电工程,2009,36(11):96-99. 被引量:2
  • 4FREEMAN W T, PASZTOR E C, Carmichael O T. Learning Low-Level Vision [J]. International Journal of Computer Vision(S0920-5691), 2000, 40: 25-47.
  • 5FREEMAN W T, JONES T R, PASZTOR E C. Example-Based Super-Resolution [J]. IEEE Computer Graphics and Applications(S0272-1716), 2002, 22(2): 56-65.
  • 6LIU C, SHUM H Y, ZHANG C S. A Two-Step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model [C]//IEEE Computer Vision and Pattern Recognition (CVPR'01), Kauai, HI, USA, December 8-14, 2001. USA: IEEE Computer Society, 2001: 192-198.
  • 7HERTZMANN A, JACOBS C E, Oliver N, et al. Image Analogies [C]// Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, August 12-17, 2001. NewYork: ACM Press, 2001: 327-339.
  • 8EFROS AA, FREEMAN W T. Image Quilting for Texture Synthesis and Transfer [C]//SIGGRAPH '01: Computer graphics and interactive techniques, Los Angeles, California, USA, August 12-17, 2001. New York: ACM Press, 2001: 341-346.
  • 9CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding [C]// IEEE Computer Vision and Pattern Recognition, Washington, D C, USA, June 27-July 2, 2001. USA: IEEE Computer Society, 2001: 275-282.
  • 10YANG J C, WRIGHT J, HUANG T, et al. Image Super-Resolution Via Sparse Representation [J]. Image Processing, IEEE Transactions on(s1057-7149), 2010, 19(11): 2861-2873.

二级参考文献9

  • 1韩玉兵,吴乐南,张冬青.基于正则化处理的超分辨率重建[J].电子与信息学报,2007,29(7):1713-1716. 被引量:11
  • 2Tsai R Y, Huang T S. Multi-frame image restoration and registration [M]// Advances in computer vision and image processing. Greenwich, Conn: JAIPress, 1984, 1: 317-339.
  • 3Stark H, Oskoui E High resolution image recovery from image-plane arrays, using convex projections [J]. J. Opt. Soc. Am. A(S0740-3232), 1989, 6: 1715-1726.
  • 4Irani M, Peleg S. Improving resolution by image registration [J]. CVGIP: Graphical models and image processing(S1049-9652), 1991, 53(3): 231-239.
  • 5Nhat N, Milanfar P, Golub G. A computationally efficient super-resolution image reconstruction algorithm [J]. IEEE Trans. Image Proeess(S1057-T149), 2001, 10(4): 573-583.
  • 6Elad M, Feuer A. Super-resolution restoration of an image sequence: Adaptive filtering approach [J]. IEEE Trans. Image Process(S1057-7149), 1999, 8(3): 387-395.
  • 7Babacan S D, Molina R, Katsaggelos A K. Total variation super resolution using a variational approach [C]// International Conference onImageProcessing, ICIP2008, San Diego, California, USA, October 12-15, 2008: 641-644.
  • 8Blomgren P, Mulet P, Chan T, et al. Total Variation Image Restoration: Numerical Methods and Extensions[C]//Proceedings 1997 International Conference on Image Processing (ICIP '97), Washington, DC, USA, October 26-29, 1997, III: 384-387.
  • 9Keren D, Peleg S, Brada R. Image Sequence Enhancement Using Sub-Pixel Displacement[C]//CVPR '88, the Computer Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, Michigan, June 5-9, 1988: 742-746.

共引文献1

同被引文献17

  • 1Baker S, Kanade T. Limits on super-resolution and how to break them[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, June, 2000: 372-379.
  • 2Freeman W T, Jones R J, Pasztor E C. Example-based super-resolution [J]. IEEE Transactions on Computer Graphics and Application(S0272-1716), 2002, 22(2): 56-65.
  • 3Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor embedding [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June, 2004: 275-282.
  • 4Lin Z C, He J F, Tang X O. Limits of learning-based super-resolution algorithms [J]. International Journal of Computer Vision(S0920-5691), 2008, 80(1): 406-420.
  • 5Mallat S. A Wavelet Tour of Signal Processing, the sparse way [M]. Burlington: Academic Press, 2009: 693-695.
  • 6Bruckstein A, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images [J]. Society for Industrial and Applied Mathematics Review(S0036-1445), 2009, 51(1): 34-81.
  • 7Elad M, Figuiredo M, Ma Y. On the role of sparse and redundant representations in image processing [J]. IEEE Proceedings - Special Issue on Applieations of Sparse Represcntation & Compressive Sensing, 2010, 98(6): 972-982.
  • 8Yang J C, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches [C]. // Proceedings oflEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, June, 2008: 1-8.
  • 9Yang J C, Wright J, Huang T, et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing(S1057-7149), 2010, 19(11): 2861-2873.
  • 10Roman Z, Elad M, Protter M. On single image scale-up using sparse-representations [C]// Proceedings of the 7Th International Conferences on Curves and Surfaces, Avignon, France, June, 2010.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部