期刊文献+

扭Smash积的整体维数(英文) 被引量:1

The global di mension of twisted smash products
下载PDF
导出
摘要 建立了H-双模代数A和它的扭smash积A*H的整体维数之间的关系. The relationship of global dimensions between theH-bimodule algebra A and its twisted smash product A* His established.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第1期1-3,30,共4页 Journal of Zhejiang University(Science Edition)
基金 supported by National Science Foundation of China(10871170) supported by the Educational Minister Science Techology Key Foundation of China(108154)
关键词 HOPF代数 H-双模代数 扭smash积 整体维数 Hopf algebra H-bimodule algebra twisted smash product global dimension
  • 相关文献

参考文献10

  • 1YANG S L. Global dimension for Hopf actions[J]. Comm Algebra,2002,30(8) :3653-3667.
  • 2WANG Z X, ZHAO H. Weak global dimension of smash products of Hopf algebras[J]. J Math Res Exposition, 2006,26 (1) : 40- 42.
  • 3WANG S H, LI J Q. On twisted smash products for bimodule algebras and the Drinfeld double[J]. Comm Algebra, 1998,26 (8) : 2435- 2444.
  • 4ZHANG Liangyun.L-R smash products for bimodule algebras[J].Progress in Natural Science:Materials International,2006,16(6):580-587. 被引量:20
  • 5ROTMAN J J. An Introduction to Homological Algebra [M]. New York: Springer,2008.
  • 6TONG W T. An Introduction to Homological Algebra [M]. Beijing: Higher Education Press,1998.
  • 7BLATTNER R J, MONTGOMERY S. A duality theorem for Hopf module algebras[J]. J Algebra, 1985, 95:153-172.
  • 8JIAO Z M, DONG L H. A duality theorem for twisted smash product algebras[J]. Adv Alg Analysis, 2006,3 : 1-11.
  • 9ETINGOF P, GELAKI S. On finite-dimensional semi- simple and cosemisimple Hopf algebras in positive characteristic[J]. Inter Math Res Notices, 2005,16 : 851 -864.
  • 10MONTGOMERY S. Hopf Algebras and Their Actions on Rings: CBMS[M]. Providence: American Mathematical Society, 1993.

二级参考文献12

  • 1[1]Bonneau P.,Gerstenhaber M.,Giaquinto A.et al.Quantum groups and deformation quantization:Explicit approaches and implicit aspects.J.Math.Phy.,2004,45:3703-3741.
  • 2[2]Bonneau P.and Sternheimer D.Topological Hopf algebras,quantum groups and deformation quantization.Lecture Notes in Pure and Appl.Math.,2005,239:55-70.
  • 3[3]PanaiteF.and Oystaeyen F.V.L-R smash product for (quasi)Hopf algebras.http://xxx.sf.nchc.gov.tw/abs/math.QA /0504386[2005-01-17].
  • 4[4]Zhang L.Y.Long bialgebras,dimodule algebras and quantum Yang-Baxter modules over Long bialgebras.Acta Mathematica Sinica,English Series,published online Mar.14,2006,Http://www.ActaMath.com.
  • 5[5]Panaite F.and Oystaeyen F.V.Some bialgebroids constructed by Kadison and Connes-Moscovoci are isomorphic.http://xxx.sf.nchc.gov.tw/abs/math.QA/0508638[2005-08-31].
  • 6[6]Wang S.H.and Li J.Q.On twisted smash product for bimodule algebras and the Drinfel'd double.Comm.Algebra,1998,26(8):2435-2444.
  • 7[7]Molnar R.K.Semi-direct products of Hopf algebras.J.Algebra,1977,47:29-51.
  • 8[8]Montgomery S.Hopf algebras and their actions on rings.CBMS,Lect.Notes,1993.
  • 9[9]Militaru G.A class of non-symmetric solutions for the integrability condition of the Knizhnik-Zamolodchikov equation:a Hopf algebra approach.Comm.Algebra,1999,27(5):2393-2407.
  • 10[10]Bahturin Y.,Fischman D.and Montgomery S.Bicharacters,twistings,and Scheunert's theorem for Hopf algebras.J.Algebra,2001,236:246-276.

共引文献19

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部