期刊文献+

基于支持向量机及遗传算法的光刻热点检测 被引量:3

Lithographic hotspot detection based on SVM and genetic algorithm
下载PDF
导出
摘要 提出一种基于支持向量机(SVM)及遗传算法(GA)的集成电路版图光刻热点检测方法.首先对版图样本进行离散余弦变换(DCT)以提取样本的频域特征,然后基于这些样本训练SVM分类器以实现对光刻热点的检测.为了提高光刻热点检测的精度及效率,采用遗传算法(GA)对频域特征进行选择,并同时优化SVM参数.实验结果表明,基于SVM及版图频域特征并结合遗传算法进行优化的光刻热点检测方法可以有效提高版图光刻热点的检测精度. A lithography hotspot detection method based on support vector machine(SVM) and genetic algorithm(GA) is proposed.Frequency domain features of integrated circuit(IC) layout samples are first extracted with discrete cosine transformation.Then SVM classifiers are trained with the layout samples so that it can be used for hotspot detection.To improve the precision and efficiency of this method,genetic algorithm is used for feature selection and SVM parameter optimization.Experiment results show that the proposed method can improve the precision of lithography hotspot detection effectively.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第1期41-45,共5页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(60720106003)
关键词 可制造性设计 光刻热点 离散余弦变换 支持向量机 遗传算法 design for manufacturability(DFM) lithography hotspot discrete cosine transform(DCT) support vector machine(SVM) genetic algorithm(GA)
  • 相关文献

参考文献10

  • 1DAI V, YANG J, RODRIGUEZ N, et al. DRC Plus: augmenting standard DRC with pattern matching on 2D geometries [C]//Design for Manufaeturability Through Design-Process Integration. San Jose, CA: SHE, 2007: 65210A.
  • 2NAGASE N, SUZUKI K, TAKAHASHI K, et al. Study of hotspot detection using neural network judgement [C]//Photomask and Next-Generation Lithography Mask Technology XIV. Yokohama, Japan: SPIE, 2007:66071B.
  • 3WUU J Y, PIKUS F G, TORRES A, et al. Detecting context sensitive hotspots in standard cell libraries [C]//Design for Manufacturability Through Design- Process Integration III. San Jose, CA: SPIE, 2009: 727515.
  • 4DING D, WU X, GHOSH J, et al. Machine learning based lithographic hotspot detection with critical-feature extraction and classification [ C]//International Conference on IC Design and Technology, Austin, TX: IEEE. 2009.
  • 5BYUN H, LEE S W. Applications of Support Vector Machines for Pattern Recognition: A Survey. Pattern Recognition with Support Vector Machines[M]. Berlin: Springer, 2002 : 571 - 591.
  • 6MATOSF M D S, BATISTA L V, POEL J V D. Face recognition using DCT coefficients selection [C]//ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil: ACM, 2008:1753-1757.
  • 7HONGX, YAO H, WAN Y, et al. A PCA based visual DCT feature extraction method for lip-reading [C]//International Conference on Intelligent Information Hiding and Multimedia. Los Alamitos, CA: IEEE Computer Society, 2006 : 321 - 326.
  • 8GUYON I, ELISSEEFF A. An introduction to variable and feature selection [J]. J Machine Learning Research, 2003,3(4) : 1157- 1182.
  • 9GOLDBERG D. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Reading, MA: Addison Wesley, 1989.
  • 10CHANG C-C, LIN C J. 2001. LIBSVM: a library for support vector machines [CP/OL][2010-3-7], ht- tp://www, csie. ntu. edu. tw/-cjlin/libsvm.

同被引文献9

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部