期刊文献+

图像特征匹配中一种高效的鲁棒估计算法 被引量:5

An effective robust estimation algorithm for image correspondence
原文传递
导出
摘要 在图像特征匹配过程中,误匹配不可避免。提出一种新的基于拓扑约束(顺序约束和仿射不变约束)的外点去除算法,用于快速地去除图像粗匹配结果中的误配点。该算法对随机采样集进行拓扑过滤,只对满足拓扑约束的采样集进行计算。实验表明,该算法相比于传统的鲁棒估计算法RANSAC和改进的PROSAC算法,大大提高了计算效率并保持很高的计算精度,有助于提升图像匹配性能及3维重建的精度和鲁棒性。 Outliers are inevitable in image matching process. To address this issue, a novel topology constraint based outlier rejection algorithm is proposed to efficiently remove the mismatches between images after coarse matching. By using the topology constraint to filter the sample sets, the proposed algorithm calculates the transformation between images based on the sample set which fully satisfies the topology constraints. Experimental results demonstrate that the proposed algorithm can significantly reduce the computational complexity, while keeping the accuracy compared to the traditional RANSAC and improved PROSAC algorithms. Therefore, the proposed method can effectively and efficiently improve the performance of image matching, and furthermore benefits the application of 3D scene reconstruction in both accuracy and robustness.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第1期84-89,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60873085) 国家高技术研究发展计划(863)项目(2007AA01Z314) 西北工业大学研究生创业种子基金项目(Z200963)
关键词 图像匹配 外点 顺序约束 仿射不变约束 拓扑约束 image matching outliers order constraint affine invariant constraint topology constraint
  • 相关文献

参考文献15

  • 1Snavely N, Seitz S M, Szeliski R. Photo tourism: exploring photo collections in 3D [ J ]. ACM Trans. Graph, 2006, 25(3) : 835-846.
  • 2Yao J, Cham W K. Robust muhi-view feature matching from muhiple unordered views [ J ]. Pattern Recognition, 2007, 40 : 3081 - 3099.
  • 3Wang Gang, Forsyth David. Object image retrieval by exploiting online knowledge resources[ C ]// CVPR, Alaska, USA: IEEE Computer Society Press, 2008 : 1-8.
  • 4James H, Alexei A Efros. Scene completion using millions of photographs [ J ]. ACM Transactions on Graphics (SIGGRAPH), 2007, 26(3): 87-94.
  • 5Chum O, Matas J. Matching with PROSAC-Progressive Sample Consensus [ C]//CVPR, San Diego, USA: IEEE Computer Society Press, 2005:220 - 226 .
  • 6Lowe D. Distinctive image features from scale-invariant keypoints [ J]. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91-110.
  • 7Jeffrey S Beis, David G Lowe. Shape indexing using approximate nearest-neighbor search in high-dimensional spaces [ C ]// CVPR, San Juan, Puerto Rico: IEEE Computer Society Press, 1997, 1000-1006.
  • 8Jagadish H V, Beng Chin Ooi, Tan Kian-Lee, et al. iDistance: an adaptive B + 2tree based indexing method for nearest neighbor search [ J ]. ACM Transactions on Data Base Systems, 2005: 364-397.
  • 9Yang Heng, Wang Qing, He Zhoucan. Indexing sub-vector distance for high-dimensional feature matching [ C ]//BMVC, London, UK: BMVA Press, 2008: 1201-1210.
  • 10He Zhoucan , Wang Qing. A fast and effective dichotomy based hash algorithm for image matching [ C ]//Lecture Notes in Computer Science, Las Vegas, Nevada, USA: Springer Press, 2008 : 328-337.

同被引文献38

  • 1韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 2M Trajkovic, M Hedley. Fast Comer Detection[ J]. Imageand Vision Computing,1998,16(2) :75—87.
  • 3D G Lowe. Object Recognition from Local Scale-invariantFeatures [ C ] //Proceedings of the IEEE International Con-ference on Computer Vision, 1999.
  • 4Lowe D G. Distinctive Image Features From Scale-invari-ant Key points [ J ]. International Journal of Computer Vi-sion, 2004,60(2) :91-110.
  • 5Mikolajczyk K, Schmid C. A Performance Evaluation ofLocal Descriptors [ C ] //IEEE Trans on Pattern Analysisand Machine Intelligence,2005 ,27( 10) :1615-1630.
  • 6Arya S, Mount D. Approximate Nearest Neighbor Queriesin Fixed Dimensions [ C ]//Fourth Annual ACM-SIAMSymposium on Discrete Algorithms, 1993 : 271 -280.
  • 7Arya S,Mount D,Netanyahu N,Silverman R. An OptimalAlgorithm for Approximate Nearest Neighbor Searching inFixed Dimensions[ J]. Journal of the ACM, 1998 ,45 (6):891-923.
  • 8Moore A. An Introductory Tutorial on KD-trees [ R]. UK:University of Cambridge, 1991 -6-1:6-18.
  • 9Brandt S. Maximum Likelihood Robust Regression withKnown and Unknown Residual Models [ C ]//Proceedingsof the ECCV 2002,2002:97-102.
  • 10Chum 0, Matas J. Matching with PROSAC-ProgressiveSample Consensus [ M ]. San Diego,USA : IEEE ComputerSociety Press ,2005.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部