期刊文献+

三维弹性问题高次有限元方程的代数多层网格法 被引量:3

Algebraic multigrid method for higher-order finite element equations in three dimensional linear elasticity
下载PDF
导出
摘要 有限元法是数值求解三维弹性问题的一类重要的离散化方法,高次有限元又是其中的一类常用有限元。由于高次元对问题具有更好的逼近效果及具有某些特殊的优点,如能解决弹性问题的闭锁现象(Poisson’s ratiolocking),使得它们在实际计算中被广泛使用。但与线性元相比,它具有更高的计算复杂性。通过分析高次有限元空间与线性有限元空间之间的关系,提出了一种求解三维弹性问题高次有限元方程的两水平方法,然后,通过调用现有的代数多层网格法求解粗水平方程,建立了求解高次有限元方程的AMG法。数值实验表明,本文设计的AMG法对求解三维弹性问题高次有限元方程具有很好的计算效率和鲁棒性。 As for finite element method, the higher-order elements are often used in that they are superior and necessary under certain conditions over the low-order ones, for example, they can overcome the Poisson's ratio locking. However, they have much higher computational complexity than the linear elements. In this paper, we firstly introduce this method for elliptic problems, to the solution of three dimensional elasticity problems discretized using higher-order elements and propose a two-level method by algebraic approaches. With the existing algebraic multigrid(L_AMG) method used as a solver on the first coarse level, an AMG method is then designed for high-order discretizations. The results of various numerical experiments show that the resulting AMG method is more robust and efficient for the solution of higher-order finite element equations in three dimensional linear elasticity.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第6期995-1000,1015,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10972191 10771178) 国家自然科学基金重点项目(11031006) 湖南省教育厅优秀青年项目(09B100)资助项目
关键词 代数多层网格 高次有限元 三维弹性问题 四面体剖分 algebraic multigrid higher-order elements 3D elasticity problems tetrahedron partition
  • 相关文献

参考文献5

二级参考文献54

  • 1孙杜杜,舒适.求解三维高次拉格朗日有限元方程的代数多重网格法[J].计算数学,2005,27(1):101-112. 被引量:17
  • 2谭敏,肖映雄,舒适.一种各向异性四边形网格下的代数多重网格法[J].湘潭大学自然科学学报,2005,27(1):78-84. 被引量:6
  • 3王建华,殷宗泽,赵维炳.多重网格法在岩石力学与工程中的应用[J].岩石力学与工程学报,1995,14(4):336-345. 被引量:9
  • 4舒适,黄云清,阳莺,蔚喜军,肖映雄.一类三维等代数结构面剖分下的代数多重网格算法[J].计算物理,2005,22(6):488-492. 被引量:8
  • 5Brandt A, McCormick S and Ruge J. Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations, Technical report, Inst. for Comp. Studies, Fort Collins, 1982.
  • 6Ruge J W and Stiiben K. Algebraic multigrid, In S. F. McCormick, editor, Multigrid methods, Frontiers in applied mathematics, pages 73-130, Philadelphia, Pennsylvania, 1987, SIAM.
  • 7Shu Shi, Xu Jinchao, Yang Ying and Yu Haiyuan. An algebraic multigrid method for finite element systems on criss-cross grids[J]. Advances in Computational Mathematics, 2006, 25: 287-304.
  • 8Xu J and Zikatanov L. On the energy minimizing base for algebraic multigrid methods[J]. Comput. Visual Sci., 2004, 7: 121-127.
  • 9Vanek P, Mandel J and Brezina M, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[J]. Computing, 1996, 56(3): 179-196.
  • 10Brezina M, Cleary A J, Falgout R D, Henson V E, Jones J E, Manteuffel T A, McCormick S F and Ruge J W. Algebraic multigrid based on element interpolation(AMGe)[J]. SIAM J. Sci. Comput., 2000: 22(5): 1570-1592.

共引文献20

同被引文献24

  • 1刘轩,舒适.非结构四边形二次Lagrangian有限元方程的代数多重网格法及收敛性分析[J].高等学校计算数学学报,2005,27(S1):215-222. 被引量:5
  • 2孙杜杜,舒适.求解三维高次拉格朗日有限元方程的代数多重网格法[J].计算数学,2005,27(1):101-112. 被引量:17
  • 3谭敏,肖映雄,舒适.一种各向异性四边形网格下的代数多重网格法[J].湘潭大学自然科学学报,2005,27(1):78-84. 被引量:6
  • 4Chang Q S, Woag Y S,Fu H. On the algebraic multi- grid methods[J]. Journal of Computational Physics, 1996,125:279-292.
  • 5Mandel j, Brezina M, Vanek P. Energy optimization of algebraic multigrid bases [J]. Computing, 1999, 62 (3) :205-228.
  • 6Vanek P, Mandel J, Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order el- liptic problems[J]. Computing, 1996,56(3) : 179-196.
  • 7Griebel M, Oeltz D, Schweitzer M A. An algebraic multigrid method for linear elasticity[J]. SIAMJour- ha! on Scientific Compututing , 2003,25 (2) : 385-407.
  • 8Shu S, Babuska I, Xiao Y X, et al. Multilevel precondi- tioning methods for discrete models o{ lattice block materials[J]. SIAM Journal on Scientific Computut- ing, 2008,31 (1) : 687-707.
  • 9Saad Y. Ierative Methods for Sparse Linear Sys- tems [M]. Second Edition, Philadelphia, PA, USA .- So- ciety for Industrial and Applied Mathematics,2003.
  • 10Babuska I,Sauter S A. Algebraic algorithms for anal- ysis of mechanical trusses[J]. Mathematical Compu- tation, 2004,73 : 1601-1622.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部