期刊文献+

模型不确定性条件下的Robust投资组合有效前沿与CAPM 被引量:5

On the Robust Portfolio Frontier and CAPM under Model Uncertainty
原文传递
导出
摘要 本文提出了Robust投资组合有效前沿的概念,并研究了模型不确定性条件下的资本资产定价模型(CAPM)。研究发现,当市场上不存在无风险资产时,模型不确定性对风险资产投资比例的影响是非平等的,因此会导致投资组合的非分散化;而且此时的两基金分离定理以及零-βCAPM也不成立。但是当市场上存在无风险资产时,模型不确定性对风险资产投资比例的影响则是平等的,并且两基金分离定理仍然成立,因为任何Robust有效前沿组合都可以表示为市场组合与无风险资产的线性组合。而此时的CPAM仍然能够成立,只是在表达形式上增添了一个因子——不确定性因子;并且所有资产或资产组合的超额收益都可以分解为风险溢价与不确定性溢价两部分。 The paper takes model uncertainty into account in studying portfolio selection problems,and proposes a definition of robust portfolio frontier along the line of mean-variance analysis.We find that model uncertainty has unequal effects on portfolio weights of risky assets when risk-free asset is inaccessible,which leads to under-diversified portfolios.We also find that the two fund separation theorem no longer stands under robust portfolio frontier and the same is true for the zero-beta CAPM model.However,when there is a risk-free asset in the economy,we find that model uncertainty has equal effects on portfolio weights of risky assets,and that the two fund separation theorem still holds,as all robust frontier portfolios can be generated by the risk-free asset and the market portfolio.The CAPM model also can hold under equilibrium except for a change that there is an additional factor representing loading of model uncertainty,and the excess rate of return of any portfolio can be divided into risk premium and uncertainty premium.
出处 《中国管理科学》 CSSCI 北大核心 2010年第6期1-8,共8页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70825002) 山东大学自主创新项目(69962186)
关键词 模型不确定性 极大极小期望效用 投资组合有效前沿 CAPM model uncertainty max-min expected utility portfolio frontier CAPM
  • 相关文献

参考文献24

  • 1Knight, F. H.. Risk, Uncertainty and Profit [M]. New York: Houghton Mifflin Company, 1921.
  • 2Gilboa, I. , Schmeidler, D.. Max-rain expected utility theory with non-unique prior [J]. Journal of Mathematical Economics, 1989, 18: 141-153.
  • 3Ellsberg, D.. Risk, ambiguity and the savage axioms [J]. Quarterly Journal of Economics, 1961, 75: 643-669.
  • 4Hansen, L. P. , Sargent, T. J.. Discounted linear exponential quadratic gaussian control [J]. IEEE Transactions on Automatic Control, 1995, 40: 968-971.
  • 5Markowitz, H. M.. Mean-variance analysis in portfolio choice and capital markets [J]. Journal of Finance, 1952, 7: 77-91.
  • 6Merton, R.. Optimum consumption and portfolio rules in a continuous time model[J]. Journal of Economic Theory, 1971, 3: 373-413.
  • 7Savage, L. J.. The Foundations of Statistics[M]. New York: Wiley Publications, 1954.
  • 8Deng, X. T., Li, Z. F., Wang, S. Y.. A minimax portfolio selection strategy with equilibrium [J]. Euro pean Journal of Operational Research, 2005, 166:278 -292.
  • 9Garlappi, L. , Uppal, R. , Wang, T.. Portfolio selection with parameter and model uncertainty: A multi-prior approach [J]. Review of Financial Studies, 2007, 20 (1): 41-81.
  • 10Uppal, R. , Wang, T.. Model misspeci fication and under-diversification [J]. Journal of Finance, 2003, 58: 2465-2486.

二级参考文献60

  • 1刘艳春,高闯.风险资产组合的均值-WCVaR模糊投资组合优化模型[J].中国管理科学,2006,14(6):16-21. 被引量:17
  • 2高莹,黄小原.具有VaR约束的跟踪误差投资组合鲁棒优化模型[J].中国管理科学,2007,15(1):1-5. 被引量:11
  • 3Markowitz, H. , M. Portfolio Selection[J]. Journal of Finance, 1952, 7(3) :77-91.
  • 4Sharpe,W.. Capital asset price: a theory of market equilibrium under conditions of risk[J].The Journal of Finance, 1964, 19(1):425-442.
  • 5Sharpe, W. F.. A simplified model for portfolio analysis[J]. Management Science, 1963, 9(2):277-293.
  • 6Mao, J. C. T.. Models of capital budgeting, E-V vs E -S[J].Journal of Financial and Quantitative Analysis, 1970, 5(5) :657-675.
  • 7Swalm, R. O.. Utility theory-insights into risk taking [J]. Harvard Business Review, 1966, 44(1): 123- 136.
  • 8Ramaswamy,S.. Portfolio selection using fuzzy decision theory[R]. Working Paper of Bank for International Settlements, 1998, No. 59.
  • 9Leon,T. , Liern, V. , Vercher, E.. Viability of infeasible portfolio selection problems., a fuzzy approach[J]. European Journal of Operational Research, 2002, 139 (1): 178-189.
  • 10Tanaka, H. , Guo, P.. Portfolio selection based on upper and lower exponential possibility distributions[J]. European Journal of Operational Research, 1999, 114(1):115-126.

共引文献19

同被引文献64

  • 1朱书尚,李端,周迅宇,汪寿阳.论投资组合与金融优化——对理论研究和实践的分析与反思[J].管理科学学报,2004,7(6):1-12. 被引量:38
  • 2张鹏,张忠桢,岳超源.限制性卖空的均值-半绝对偏差投资组合模型及其旋转算法研究[J].中国管理科学,2006,14(2):7-11. 被引量:41
  • 3Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952,7 : 77:91.
  • 4Konno H, Yamazaki H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market [J]. Management Science, 1991,37:519:531.
  • 5Markowitz H M. Portfolio selection: Efficient diversification of investment [J]. New York : John Wiley : Sons,1959.
  • 6Speranza M G. Linear programming models for portfolio optimization [J]. Finance, 1993,14: 107: 123.
  • 7Black F, Litterman R. Global portfolio optimization [J]. Journal of Financial Analysts, 1992,48 : 28:43.
  • 8Chopra V K, Ziemba W T. The effect of errors in means, variance and covariances on optimal portfolio choice[J]. Journal Portfolio Management, 1993,19 : 6 :11.
  • 9Lobo M S, Boyd S, The worst-case risk of a portfolio, Technical Report [Z]. http ://faculty. fuqua, duke. edu/sim mlobo/bio/researchfiles/rsk- bnd. pdf, 2000.
  • 10Tutuncu R H, Koenig M. Robust asset allocation [J]. Annals of Operations Research, 2004,132 : 157:187.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部