期刊文献+

金融市场高维波动率的扩展广义正交GARCH模型与参数估计方法研究 被引量:8

An Extended Generalized Orthogonal GARCH Models for Multivariate Volatility in High Dimensional System of Finance Market and Its Parameter Estimation
原文传递
导出
摘要 本文对Van der Weide(2002)的广义正交GARCH模型进行扩展,提出反映金融资产收益波动性特征,具有"杠杆效应"的广义正交GARCH模型。由于这种扩展的广义正交GARCH模型在高维数据中面临参数估计困难,本文从交互信息理论视角研究模型的参数估计问题,在理论上证明基于交互信息最小化的多元GARCH模型参数估计与基于极大似然函数参数估计的联系和区别,并在提出的扩展广义正交GARCH模型框架下,采用不同的统计技术实现基于交互信息最小化的参数估计方法,避免了传统极大似然函数估计需要事先正确指定标准化残差概率密度函数和高维运算困难,计算效率较高,使多元GARCH模型在高维数据中可以应用。最后,根据全球主要金融市场的15种股票指数数据,通过实证研究对建立的扩展广义正交GARCH模型及其参数估计方法有效性进行评价与检验。实证研究表明了本文提出的扩展广义正交GARCH模型与参数估计方法的优势。 In this paper,an extended generalized orthogonal GARCH Model,which can reflect the asymmetry and leverage of volatility,is proposed based on that of Van der Weide(2002).Then,a new estimation method for the multivariate GARCH models from the mutual information-theoretic viewpoint is considered.The relationship between the statistical dependence in standardized residuals and the maximum likelihood,when estimating multivariate GARCH models,is revealed.Based on that,the different statistic ways are proposed in the framework of the extended generalized orthogonal GARCH models,for purpose of implementing the models based on the estimation of mutual information minimization.These methodologies can therefore be easily applied to high-dimensional systems,where likelihood-based estimation will run into computational problems.According to 15 global stock returns indexes,empirical research is included to illustrate the model and the estimation method.
作者 刘志东 薛莉
出处 《中国管理科学》 CSSCI 北大核心 2010年第6期33-41,共9页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70603034 70971145) 教育部人文社科项目(08JC790107) 中央财经大学"211工程"三期资助项目
关键词 交互信息 多元GARCH模型 杠杆效应 参数估计 动态条件相关 mutual information multivariate GARCH models leverage effects parameter estimation dynamic conditional correlation
  • 相关文献

参考文献26

  • 1Bollerslev, T. , Engle, R. F. , Wooldridge, J. M.. A capital asset pricing model with time varying covariances [J]. The Journal of Political Economy, 1988, 96: 116- 131.
  • 2Engle, R. F. , Kroner, K. F.. Multivariate simultaneous generalized ARCH [J]. Econometric Theory, 1995, 11:122-150.
  • 3Bollerslev, T.. Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model [J]. Review of Economics and Statistics, 1990, 72:498-505.
  • 4Tse, Y. K. , Tsui,K. C. . A multivariate generalized autoregressive conditional heteroscedastielty model with time varying correlations [J]. Journal of Business and Economic Statistics, 1999, 20:351-362.
  • 5Engle, R.. Dynamic conditional eorrelation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J]. Journal of Business and Economic Statistics, 2002, 20: 339-350.
  • 6Engle, R. F. , Ng,V. K. , Rothschild,M.. Asset pri cing with a factor ARCH covarianee structure: Empiri cal estimates for treasury bills [J]. Journal of Econo metrics, 1990, 45:213-238.
  • 7刘志东.多元GARCH模型结构特征、参数估计与假设检验研究综述[J].数量经济技术经济研究,2010,27(9):147-160. 被引量:16
  • 8Ding, Z.. Time Series Analysis of Speculative Returns [D]. PhD Dissertation, University of California at San Diego, 1994.
  • 9Alexander, C. , Chibumba, A.. Multivariate Orthogonal Factor GARCH [Z]. University of Sussex, Mimeo, 1997.
  • 10Van der Weide, R.. GO- GARCH.- A multivariate generalized orthogonal GARCH model [J]. Journal of Applied Econometrics, 2002, 17: 549 - 564.

二级参考文献80

  • 1王明进,陈奇志.基于独立成分分解的多元波动率模型[J].管理科学学报,2006,9(5):56-64. 被引量:21
  • 2Long, X. , and A. Ullah, 2005, Nonparametric and semi parametric multivariate GARCH mode [R], Working paper.
  • 3Pelletier, D. , 2006, Regime switching for dynamic correlations [J], Journal of Econometrics, 131: 445-473.
  • 4Silvennoinen, A., and T. Terfisvirta, 2005, Multivariate autoregressiveconditional heteroskedasticity with smooth transitions in conditional correlations [R], SSE/EFI Working Paper Series in Economies and Finance, No. 577.
  • 5Silvennoinen, A., and T. Terasvirta, 2007, Modelling multivariate autoregressive conditional heteroskedasticity with the double smooth transition conditional correlation GARCH model [R], SSE/EFI Working Paper Series in Economics and Finance, No. 652.
  • 6Silvennoinen, A. , and T Ter? svirta, 2008, Multivariate GARCH models, in Handbook of Financial Time Series [M], New York.. Springer.
  • 7Tse, Y. K. , 2000, A test for constant correlations in a multivariate GARCH model [J], Journal of Econometrics, 98, 107-127.
  • 8Tse, Y., 2002, Residual-based Diagnostics for Conditional HeteroscedasticityModels [J], Econometrics Journal, 5: 358-373.
  • 9Tse, Y.K. , and K. C. Tsui, 2002, A multivariate generalized autoregressive conditional heteroscedasticity model with time -varying correlation [J].Journal of Business and Economic Statistics, 20, 351-362.
  • 10van der Weide, R. , 2002, GO-GARCH : A multivariate generalized orthogonal GARCH model [J], Journal of Applied Econometrics, 17:549-564.

共引文献58

同被引文献102

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部