期刊文献+

一类非完整系统的变结构控制运动规划 被引量:3

VARIABLE STRUCTURE MOTION PLANNING FOR A CLASS OF NONHOLONOMIC SYSTEMS
下载PDF
导出
摘要 本文研究了一类带有非完整约束的非线性受限系统的运动规划问题. 首先讨论了非完整系统的分类及可控性条件, 并给出一类非完整系统运动可规划条件, 进而采用模型到达系统的变结构控制方法实现了该类非完整系统的运动规划. This paper addresses the motion planning problems for a class of nonlinear systems with nonholonomic constraints. The classification and the controllability conditions of the nonholonomic systems are discussed, the conditions for motion planning of a class of nonholonomic systems are presented as well. Furthermore the motion planning problems of these systems are resolved by variable structure model_reaching control strategy.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 1999年第8期103-107,共5页 Journal of South China University of Technology(Natural Science Edition)
关键词 非完整系统 运动规划 变结构控制 机器人 nonholonomic system motion planning variable structure control model_reaching system
  • 相关文献

参考文献7

  • 1梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985..
  • 2胡跃明,用其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10. 被引量:26
  • 3Popa D,IFAC 13th Triennial World Congress San Francisco,1996年
  • 4Li Z X,Nonholonomic Motion Planning,1993年
  • 5Murray R N,A Mathematical Introduction to Robotic Manipulation,1992年
  • 6高为炳,变结构控制理论基础,1990年
  • 7梅凤翔,非完整系统力学基础,1985年

二级参考文献11

  • 1Hu F,ASME J of Dynamic Systems Measurement and Control,1994年,116卷,9期,336页
  • 2Hu F,ASME J of Dynamic Systems Measurement and Control,1994年,116卷,3期,56页
  • 3Wang Y,Robotica,1994年,12卷,391页
  • 4Li Z,1993年
  • 5Yun X,Proc of 1992 IEEE Internationl Conf on Robot and automat,1992年,2193页
  • 6Li Z,IEEE Trans on Robot and Automat,1990年,6卷,1期,62页
  • 7Yun X,Proc of 27th IEEE Conf on Decision and Conerol,1988年,622页
  • 8高为炳,非线性控制系统导论,1988年
  • 9王朝珠,控制理论与应用,1986年,3卷,1期,2页
  • 10廖晓昕,动力系统的稳定性,1983年

共引文献94

同被引文献33

  • 1胡跃明,用其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10. 被引量:26
  • 2Kolmanovsky I, McClamroch N H. Developments in nonholonomic control problems. IEEE Control System Magazine, 1995, 15:20~36
  • 3Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Florida:CRC Press, 1994
  • 4Brockett R W. Control theory and singular Riemannian geometry. In:Hinton P, Young G, eds. New Directions in Applied Mathematics. New York:Springer-Verlag, 1981:11~27
  • 5Murray R M, Sastry S S. Nonholonomic motion planning:steering using sinusoids. IEEE Transactions on Automatic Control, 1993, 38(5):700~716
  • 6Lafferriere G, Sussmann H J. A differential geometric approach to motion planning. In:Li Z, Canny J F, eds. Nonholonomic Motion Planning. Kluwer, 1993:235~270
  • 7Reyhanoglu M. A general nonholonomic motion planning strategy for Caplygin systems. In:Proceedings of the 33rd IEEE Conference on Decision and Control, 1994:2 964~ 2 966
  • 8Gurvits L, Li Z. Smooth time-periodic feedback soiutions for nonholonomic motion planning, In:Li Z, Canny J F, eds. Nonholonomic Motion Planning. Kluwer, 1993:53~ 108
  • 9Leonard N E, Krishnaprasad P S. Averaging for attitude control and motion planning. In:Proceedings of the 32nd IEEE Conference on Decision and Control, 1993:3 098~ 3 104
  • 10Laumond J P, Jacbs P E, Taix M, et al. A motion planner for nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 1994, 10(5):577~593

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部