期刊文献+

拉丁方与正交拉丁方的应用和构造 被引量:2

The Practical applications and construct of Latin squares and orthogonal Latin squares
下载PDF
导出
摘要 引入拉丁方的概念,介绍了拉丁方和正交拉丁方在实际中的应用,并给出它们的构造方法. The article introduces the Latin squares and orthogonal Latin squares,introduces the practical applications in our life,and gives the method of constructing orthogonal Latin squares.
作者 刘秀梅
出处 《宁德师专学报(自然科学版)》 2010年第4期347-349,共3页 Journal of Ningde Teachers College(Natural Science)
关键词 拉丁方 正交拉丁方 构造 应用 Latin squares orthogonal Latin squares application construct
  • 相关文献

参考文献6

二级参考文献15

  • 1朱士信.正交拉丁方的升阶算法及应用[J].电子学报,1995,23(7):120-120. 被引量:2
  • 2聂灵沼,丁石孙.代数学引论[M].北京:高等教育出版社,2004.
  • 3G.Tarry.Le prebleme de 36 officciers[J].C.R.Assoc.franc.Avanc.Sci.nat,1900(1):122-123.
  • 4R.C.bose,S.S.Shrikhande,E.T.Parker.Further result on the construction of mutually orthogonal Latin squares and the falsity of Eulers conjecture[J].J.Math.1960 (12):189-203.
  • 5[1]J Denes and A D Keedwell.Latin Squares and Their Applications[M].Academic Press , New York, 1974.
  • 6[2]J Can.The non-existence of finite projective planes of order 10[J].Math. XLI,1989: 1117-1123.
  • 7[3]David Ford and Kenneth W Johnson.Determinants of Latin Squares of Order 8[J]. Experimental Mathematics, Vol. 5 , No. 4,1996.
  • 8[4]W W Rouse Ball and H S M Coxeter.Mathematical Recreations and Essays[M].Dover, 1987.
  • 9[5]S K Stein, Mathematics: The Man-Made Universe[M].3rd edition, Dover, 2000.
  • 10[6]K Kim and V K Prasanna Kumar.Perfect Latin squares and parallel array access [J]. Proceedings of the 16th International Symposium on Computer Architecture, Jerusalern, Iserael,May/June 1989:372-379.

共引文献2

同被引文献6

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部