期刊文献+

一类具有多个时滞变量n阶非线性微分方程的反周期解的存在唯一性(英文) 被引量:2

Anti-periodic Solutions for a Kind of Nonlinear Nth-order Differential Equation with Multiple Deviating Arguments
下载PDF
导出
摘要 通过应用Leray-Schauder度定理研究了一类具有多个时滞变量微分方程:x(n)(t)+f(t,x(n-1)(t))+sum gi from i=1 to m(t,x(t-τi(t)))=e(t)的反周期解问题,得到了反周期解存在与唯一的新的结果. In this paper, we use the Leray-Schauder degree theory to establish some new results on the existence and uniqueness of anti-periodic solutions for a kind of nonlinear nth-order differential equation with multiple deviating arguments of the form:
出处 《重庆工商大学学报(自然科学版)》 2010年第6期545-550,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金资助项目(10771001) 安徽省自然科学基金资助项目(090416237) 安徽省教育厅自然科学基金资助项目(KJ2009A005Z)
关键词 反周期解 LERAY-SCHAUDER度 偏差变量 连续性定理 anti-periodic solution Leray-Schauder degree deviating arguments continuation theorem
  • 相关文献

参考文献13

  • 1YU Y H,SHAO J Y,YUE G X.Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments[J].Nonlinear Anal,2009,71:4689-4695.
  • 2AIZICOVICI S,MCKIBBEN M,REICH S.Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities[J].Nonlinear Anal,2001,43:233-251.
  • 3CHEN T,LIU W,ZHANG J,et al.The existence of anti-periodic solutions for Lienard equations[J].J.Math.Study,2007,40:187-195.
  • 4CHEN Y,NIETO J J,OREGAN D.Anti-periodic solutions for fully nonlinear first-order differential equations[J].Math.Comput.Modelling,2007,46:1183-1190.
  • 5BURTON T A.Stability and Periodic Solution of Ordinary and Functional Differential Equations[M].Academic Press,Orland,FL,1985.
  • 6SHI P L,WEI G G.Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument[J].Nonlinear Anal,2004,56:501-514.
  • 7WEN B L,YONG L.The existence of periodic solutions for high order Duffing equations[J].Acta Math.Siniea,2003,46:49-56.
  • 8MAWHIN J.Periodic solutions of some Vector retarded functional differential equations[J].J.Math.Anal.Appl.,1945,45:588-603.
  • 9WANG SH M,XIONG M,CHA G ZH.Existence of periodic non-autonomous second solutions for a class of order Hamiltonian Systems[J].J Chongqing Technol Business Univ,2008,25:5-8.
  • 10HALE J.K.Theory of Functional Differential Equations[M].Springer-Verlag,New York,1977.

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部