期刊文献+

带分数布朗运动的随机时滞Lotka-Volterra模型的渐近性

Asymptotic Behaviour of Stochastic Delay Lotka-Volterra Model with Fractional Brownian Motion
下载PDF
导出
摘要 给出了一类带有H指数的随机延迟Lotka-Volterra模型。利用伊藤公式、基本不等式和Borel-Cantelli引理,得到了带有分数布朗运动的随机延迟Lotka-Volterra模型渐近稳定的充分条件。 In this paper,a stochastic delay Lotka-Volterra model with Hurst exponent H being in(0,1/2) is established.Sufficient conditions of asymptotic stability are obtained for stochastic delay Lotka-Volterra model with fractional Brownian motion.The analyses are conducted by using It formula,elementary inequality and Borel-Cantelli lemma.
作者 刘萍 张启敏
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2010年第6期74-77,81,共5页 Journal of Henan University of Science And Technology:Natural Science
基金 教育部重点基金项目(208160) 宁夏自然科学基金项目(NZ0835)
关键词 分数布朗运动 随机微分时滞方程 Lotka-Voltreea模型 Fractional brownian motion Stochastic differential delay equation Lotka-Volterra model
  • 相关文献

参考文献9

  • 1He X,Gopalsamy K.Persistence,Attractivity and Delay in Facultative Mutualism[J].Math Anal Appl,1997,21(5):154-173.
  • 2Liu P,Elaydi S.Discrete Competitive and Cooperative Models of Lotka-Volterra Type[J].Journal of Computational Analysis and Applications,2001,3(1):53-73.
  • 3Mao X,Marion G,Renshaw E.Environmental Brownian Noise Suppresses Explosions in Population Dynamics[J].Stochastic Processes and Their Applications,2002,9(7):95-110.
  • 4Teng Z,Yu Y.Some New Results of Nonautonomous Lotka-Volterra Competitive Systems with Delays[J].Math Anal Appl,2002,24(1):254-275.
  • 5Mao X,Sabanis S,Renshaw E.Asymptotic Behaviour of the Stochastic Lotka-Volterra Model[J].Mathematical Analysis and Applications,2003,28(7):364-380.
  • 6Fei D,Qi L,Mao X,et al.Moise Suppresses Prexpresses Exponential Growth[J].Systems & Control Letters,2008,5(7):262-270.
  • 7刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 8Bahar A,Mao X.Stochastic Delay Lotka-Volterra Model[J].Math Anal Appl,2004,29(2):364-380.
  • 9Mao X.Exponetial Stability of Stochastic Differential Equations[Z].New York:Department of Statistics and Modelling Science,University of Strathchyde Glasgow,1994:183-215.

二级参考文献5

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2Ducan, T.E., Y. Hu and B. Pasik-Ducan, Stochastic calculus for fractinal Brownian motion, I. SIAMJ. Control Optim.,38(2000), 582-612.
  • 3Hu, Y. and B. Oksendal, Fractional white noise calculus and application to finance, Inf. Dim. Anal. Quantum Prob.Rel. Top., 6(2003), 1-32.
  • 4Lin, S.J., Stochastic analysis of fractional Brownian motion, fractional noises and application, SIAM Review,10(1995), 422-437.
  • 5Ciprian Necula, Option Pricing in a Fractional Brownian Motion Enviroment, Preprint, Academy of Economic Studies Bucharest, Romania, www.dofin.ase.ro/.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部