摘要
设B=(Ω,F,(F_t)_(t≥0),(B_t)_(t≥0),(P_x)_(x∈R^d))为L^2(R^d,m)上经典的布朗运动,(ε,D(ε))为其联系的对称狄氏型.设u∈D(ε),u(B_t)-u(B_0)=M_t^u+N_t^u为u(B_t)的Fukushima分解.该文主要研究由上鞅可乘泛函L_t^(-u):=e~(M_t^(-u)-1/2〈M^(-u〉t)对(B_t)_(t≥0)进行变换所得到的新过程(B_t)_(t≥0)的一些性质;同时还研究了由N_t^u产生的布朗运动可加泛函渐近性问题,并得到了新的结果:如果u有界,▽u∈K_(d-1),且L_t^(-u)是鞅,||E.(e^(M_t^-u))||_q<∞。
Let B=(Ω,F,(F_t)t≥0,(B_t)t≥0,(P_x)x∈R^d)be the classical Brownian motion on L^2(R^d,m),which is associated with a symmetric Dirichlet form(ε,D(ε)).For u∈D(ε), u(B_t)-u(-B_0)=M_t^u+N_t^u is Fukushima decomposition,where u is a quasi-continuous version of u,M_t^u the martingale part and N_t^u the zero energy part.In this paper,the authors first study transformed process B of B,which is determined by the supermartingale L_t^(-u):=e^M_t^(-u)-1/2(M^(-u)_t, they get some properties of its transition semigroup;Then,they study the asymptotic properties of N_t^u,they get that if L_t^(-u) is a martingale,u is bounded and▽_u∈K_(d-1),|E.(e^M_t^(-u))||_q∞, then for every x∈R^d, ■1/t log E_x(e^N_t^u)=-■(ε(f,f)+ε(f^2,u)), where D(ε)_b=D(ε)∩L~∞(R^d,m).
出处
《数学物理学报(A辑)》
CSCD
北大核心
2010年第6期1485-1494,共10页
Acta Mathematica Scientia
基金
国家自然科学基金(10961012)
海南省自然科学基金(80529)
海南师范大学博士基金资助
关键词
狄氏型
Fukushima分解
布朗运动
转移密度函数
渐近性
Dirichlet form
Fukushima decomposition
Brownian motion
Transition density function
Asymptotic property