期刊文献+

布朗运动可加泛函渐近性的一些新结果 被引量:1

Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion
下载PDF
导出
摘要 设B=(Ω,F,(F_t)_(t≥0),(B_t)_(t≥0),(P_x)_(x∈R^d))为L^2(R^d,m)上经典的布朗运动,(ε,D(ε))为其联系的对称狄氏型.设u∈D(ε),u(B_t)-u(B_0)=M_t^u+N_t^u为u(B_t)的Fukushima分解.该文主要研究由上鞅可乘泛函L_t^(-u):=e~(M_t^(-u)-1/2〈M^(-u〉t)对(B_t)_(t≥0)进行变换所得到的新过程(B_t)_(t≥0)的一些性质;同时还研究了由N_t^u产生的布朗运动可加泛函渐近性问题,并得到了新的结果:如果u有界,▽u∈K_(d-1),且L_t^(-u)是鞅,||E.(e^(M_t^-u))||_q<∞。 Let B=(Ω,F,(F_t)t≥0,(B_t)t≥0,(P_x)x∈R^d)be the classical Brownian motion on L^2(R^d,m),which is associated with a symmetric Dirichlet form(ε,D(ε)).For u∈D(ε), u(B_t)-u(-B_0)=M_t^u+N_t^u is Fukushima decomposition,where u is a quasi-continuous version of u,M_t^u the martingale part and N_t^u the zero energy part.In this paper,the authors first study transformed process B of B,which is determined by the supermartingale L_t^(-u):=e^M_t^(-u)-1/2(M^(-u)_t, they get some properties of its transition semigroup;Then,they study the asymptotic properties of N_t^u,they get that if L_t^(-u) is a martingale,u is bounded and▽_u∈K_(d-1),|E.(e^M_t^(-u))||_q∞, then for every x∈R^d, ■1/t log E_x(e^N_t^u)=-■(ε(f,f)+ε(f^2,u)), where D(ε)_b=D(ε)∩L~∞(R^d,m).
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第6期1485-1494,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(10961012) 海南省自然科学基金(80529) 海南师范大学博士基金资助
关键词 狄氏型 Fukushima分解 布朗运动 转移密度函数 渐近性 Dirichlet form Fukushima decomposition Brownian motion Transition density function Asymptotic property
  • 相关文献

参考文献16

  • 1Ma Z M,M Rockner.Introduction to the Theory of (Non-symmetric) Dirichlet Forms.Berlin:SpringerVerlag,1992.
  • 2M Fukushima,Y Oshima,M Takeda.Dirichlet Forms and Symmetric Markov Processes.New York:Walter de Gruyter Berlin,1994.
  • 3Sergo Albeverio,Philippe Blanchard,Ma Z M.Feynman-Kac semigroups in terms of signed smooth measures.International Series of Numerical Mathmatics,1991,102.
  • 4M Takeda.Asymptotic properties of generalized Feynman-Kac functionals.Func Anal,1998,9:261-291.
  • 5Chen Chuanzhong,Ma Z M,Sun Wei.On Girsanov and generalized Feynman-Kac transformations for symmetric Markov processes.Infinite Dimensional Analysis,Quantum Probability and Related Topics,2007,10(2):141-163.
  • 6M Takeda,Zhang T S.Asymptotic properties of additive functionals of Brownian motion.The Analysis of Probability,1997,25(2):940-952.
  • 7Zhang T S.Generalized Feynman-Kac senigroups,associated quadratic forms and asymptotic properties.Potential Analysis,2001,14:387 408.
  • 8Chen Chuanzhong,Sun Wei.Strong continuity of generalized Feynman-Kac semigroups:necessary and sufficient conditions.J Func Anal,2006,237:446-465.
  • 9M J Sharp.General Theory of Markov Process.San Diego:Academic Press,1988.
  • 10Chen Z Q,Zhang T S.Girsanov and Feynman-Kac type transformations for symmetric Markov processes.Ann Inst H Poincaré Probab Statist,2002,38(4):475-505.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部