期刊文献+

极大极小问题的光滑化信赖域共轭梯度法 被引量:2

A smoothing trust-region Newton-CG method for minimax problems
下载PDF
导出
摘要 目的求解无约束有限极大极小问题。方法利用光滑函数将极大极小问题转化为可微的无约束优化问题。结果给出了信赖域牛顿共轭梯度法解该优化问题的算法。结论该算法是可行的、有效的,尤其是对于大规模问题,该算法与其他方法相比具有明显的优势。 Aim To solve the finite unconstrained minimax problems.Methods Exploiting a new smoothing function and converting the minimax problem to an unconstrained optimization problem equivalently.Results A smoothing trust region Newton-CG method for the solution of unconstrained problems is derived.Conclusion Numerical results indicate the feasibility and efficiency of the proposed algoritlm,especially,it is better than the other methods for the large scale problems.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期941-945,共5页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(60603098) 中央高校基本科研业务费专项基金资助项目(JY10000970004 JY10000970007)
关键词 有限极大极小问题 光滑方法 无约束优化 SQP算法 信赖域牛顿共轭梯度算法 finite minimax problem smoothing method unconstrained optimization SQP algorithm trust-region Newton-CG algorithm
  • 相关文献

参考文献10

  • 1CHARALAMBOUS C,CONN A R.An efficient method to solve the minimax problem directly[J].SIAM J Num Anal,1978,15:377-391.
  • 2OSBORNE M E,WATSON G A.An algorithm for minimax approximation in the nonlinear case[J].Comp J,1969,12:63-68.
  • 3ZANG I.A smoothing out technique for minimax optimization[J].Math Prog,1980,19:61-77.
  • 4李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 5KREISSELONEIER G,STEINHAUSER R.Systematic control design by optimiging a vector permance index[J].Proc of IFAC Symp on CAD of Contr Sys,1979(2):113-117.
  • 6CHANG K J.Optimility Criteria methods using K-S functions[J].Structurdl Optimigation,1992,4:213.
  • 7邢志栋,王若鹏,董建民.一类线性规划的调节熵函数法[J].西北大学学报(自然科学版),2004,34(1):1-3. 被引量:6
  • 8NOCEDAL J,WTIGHT S J.Numerical Optimization[M].New York:Springer-Verlag,1999.
  • 9LULSAN L,VLCEK J.Test problems for nonsmooth unconstrained and linearly constrained optimization[R].Technical Report,2000.
  • 10POLAK E,ROYSET J O,WOMERSLEY R S.Algorithms with adaptive smoothing for finite minimax problems[J].JOTA,2003,119(3):459-484.

二级参考文献4

共引文献141

同被引文献10

  • 1马建华,崔玉泉.凸二次参数规划的逆问题及其应用[J].山东大学学报(理学版),2004,39(4):40-45. 被引量:1
  • 2柳娟,谢铁军,孙玉华.一类共轭梯度法的全局收敛性[J].运筹与管理,2006,15(3):75-79. 被引量:7
  • 3Zhang J,Zhang L.An augmented lagrangian method for a class of inverse quadratic programming problems[J].Appl Math Optim,2010,61(3) :57-83.
  • 4Burton D, Toint P L.On an instance of the inverse shortest paths problem[J].Mathematical Programming, 1992,53(4) : 45-61.
  • 5Zhang J,Liu Z.Caculating some inverse linear program- ming problems[J].Journal of Ccomputational and Applied Mathematics, 1996,72 (2) : 261-273.
  • 6Nocedal J,Wtight S J.Numerical optimization[M].New York: Springer-Verlag, 1999.
  • 7Zhao X, Sun D, Toh K.A Newton-CG augmented Lagrangian method for semide finite programming[J].Optimization, 2008,30(5) : 69-73.
  • 8Iyengar G, Kang W.Inverse conic programming and appli- cations[J].Oper Res Lett, 2005,33 ( 6 ) :319-330.
  • 9Rockafellar R T.The multiplier method of Hestenes and Powell applied to convex programming[J].Optim Theory Appl, 1973,12(4) :555-562.
  • 10刁在筠,丁梅.凸二次规划问题逆问题的模型与解法[J].运筹学学报,2000,4(4):88-94. 被引量:3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部