期刊文献+

一类具有时滞的捕食-食饵系统发生Hopf分支的条件 被引量:1

Conditions of Hopf bifurcation for a predator-prey system with time delay
下载PDF
导出
摘要 目的研究了一类具有时滞的捕食-食饵系统的Hopf分支。方法应用Hopf分支理论进行研究。结果讨论了正平衡点的性质;以时滞τ作为分支参数,通过分析正平衡点处的特征方程,证明了系统存在Hopf分支现象。结论给出了系统发生Hopf分支的条件,完善了此模型的研究。 Aim In this paper,the Hopf bifurcation of a delayed predator-prey system in studied.Methods By applying the theorem of Hopf bifurcation.Results The stability of the positive equilibrium is discussed.By setting the delay τ as the bifurcation parameter and by analyzing the characteristic equation of the linearized system of original system at the positive equilibrium,it is found that Hopf bifurcations exist when the delay τ passes through a sequence of critical values.Conclusion The sufficient conditions of positive equilibrium occurring Hopf bifurcations are given,and improved this model is improved.
机构地区 西北大学数学系
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期957-960,共4页 Journal of Northwest University(Natural Science Edition)
基金 西北大学研究生创新基金资助项目(08YZZ31)
关键词 捕食-食饵系统 时滞 平衡点 HOPF分支 predator-prey system time delay equilibrium Hopf bifurcation
  • 相关文献

参考文献7

  • 1SONG Y L,WEI J J.Local Hopf bifurcation and global periodic solution in a delayed predator-prey system[J].J Math Anal Appl,2005,301:1-21.
  • 2FARIA T.Stability and bifurcation for a delayed predator-prey model and the effect of diffusion[J].J Math Anal Appl,2001,254:433-463.
  • 3宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 4YAN Xiang-ping,LI Wan-tong.Hopf bifurcation and global periodic solution in a delayed predator-prey system[J].Appl Math Comput,2006,177:427-445.
  • 5魏章志,张祖峰,王良龙.一类时滞系统的全局Hopf分支的存在性[J].合肥学院学报(自然科学版),2007,17(4):4-8. 被引量:3
  • 6HALE J K.Theory of Functional Differential Equations[M].New York:Spring-Verlag,1997.
  • 7YAN Xiang-ping,ZHANG Cun-hua.Hopf bifurcation in a delayed Lokta-Volterra predator-prey system[J].Nonlinear Anal,2008,9:114-127.

二级参考文献24

  • 1宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 2朱玲,蒋威.多时滞中立型捕食-食饵系统的Hopf分支[J].合肥学院学报(自然科学版),2007,17(2):28-29. 被引量:1
  • 3[7]Wen Xianzhang,Wang Zhicheng.The Existence of Periodic Solutions for Some Models with Delay[J].Nolinear Analysis:Real World Applications,2002 (3):567-581.
  • 4[8]Wu Jianhong.Theory and Applications of Partial Functional Differential Equations[M].New York:Spring-Verlag,1996.
  • 5[9]Wang Wendi,Ma Zhi'en.Harmless Delay for Uniform Persistence[J].J math Ana Appl,1991,158 (1):256-268.
  • 6[10]Wu Jianhong.Symmetric Functional Differential Equations and Neural Networks with Memory[J].Trans Ammer Math Soc,1998,198:4799-4838.
  • 7[2]Leung A.Periodic Solutions for a Prey -predator Differential Delay Equations[J].J Diff Eqns,1977,26(2):391-403.
  • 8[3]Huang Qichang,Wei Junjie,Wu Jianhong,et al.Direction and Stability of Bifurcating Periodic Solutions in Predator-Prey Systems with Discrete Delay[M] //Diff Eqns,Con.The Lecture Notes in Pure Appl Math.New York:Marcel Dekker Inc,1996:107-119.
  • 9[5]Hale J K,Lunels M V.Introduction to Functional Differential Equations[M].New York:Spring-Verlag,1993.
  • 10Ma, Z., Stability of predation models with time delay [J], Applicable Analysis, 22 (1986),169-192.

共引文献28

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部