期刊文献+

监督交通量变化的多模型预测自适应交通信号灯控制 被引量:2

Intelligent traffic volume variation control with supervised multi-model traffic signal adaptive predictive control
下载PDF
导出
摘要 因信号设定时间和车流量动态行为引起的交通量变化是现代交通控制系统存在高度不确定性的主要因素.根据交通流量具有高峰期、正常期及突发超流量期的特点,本文提出了一种监督多模型交通流量建模方法,结合模型预测控制技术对交通信号灯进行优化式智能控制,对不同交通模式下交通流量的实时变化作出反应,在优化的模式下对关键主干道交叉路口的信号灯进行自适应调节,达到实现通行次数合理,车辆延误时间以及停车时间都减少的目的.仿真示例说明了该方法的有效性. A major issue in traffic control systems is the high level of uncertainty due to traffic volume variation in the dynamics of vehicular queue and signal timings.An approach is proposed to deal with the problem based on the supervised multi-model signal adaptive predictive control(SMM-SAPC).According to the characteristics in traffic flow,such as nominal period,peak period and a super flow period,a supervised multi-model approach for modeling the dynamic traffic flow is proposed.By incorporating the traffic modeling method within MPC with control traffic signal systems,a novel intelligent traffic control is implemented.Corresponding response will be made for different traffic conditions;an adaptive signal control for intersection in a main road can be implemented.The presented simulations are indicative for the reasonable traffic time and reduction in delay time and stop time that can be achieved by the proposed method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第12期1655-1660,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(61064003) 甘肃省科技计划资助项目(0916RJZA018) 甘肃省工业过程先进控制重点实验室科研基金资助项目(XGK0908)
关键词 智能交通控制 信号灯自适应调节 监督多模型 模型预测控制 车流量 intelligent traffic control adaptive signal timings manipulation supervised multi-model model predictive control vehicular traffic volume
  • 相关文献

参考文献13

  • 1HOOGENDOORN S P,BOVY P H L.State-of-the-art of vehicular traffic flow modelling[J].Journal of Systems and Control Engineering,2001,215(4):283-303.
  • 2GRADINESCU V,GORGORIN C,DIACONESCU R,et al.Adaptive traffic lights using car-to-car communication[C] //Proceedinds of 65th the IEEE Vehicular Technology Conference.Dublin:IEEE,2007,4:21-25.
  • 3SUSSMANF J M.Intelligent vehicle highway systems:challenge for the future[J].IEEE Micro Magazine,1993,1(14/18):101-104.
  • 4BISHOP R.Intelligent Vehicles Technology and Trends[M].Artech House,2005.
  • 5CAI C,WONG C K,HEYDECKER B G.Adaptive traffic signal control using approximate dynamic programming[J].Transportation Research Part C,2009,17(5):456-474.
  • 6刘智勇,李水友.城市交通信号的ANN自校正预测控制[J].控制理论与应用,2003,20(6):933-937. 被引量:7
  • 7KOTASIALOS A,PAPAGEORGIOU M,MANGEAS M,et al.Coordinated and integrated control of motorway networks via nonlinear optimal control[J].Transportation Research C,2002,10(1):65-84.
  • 8BELLEMANS T,SCHUTTER B D,MOOR B D.Model predictive control for ramp metering of motorway traffic:A case study[J].Control Engineering Practice,2006,14(7):757-767.
  • 9BASKAR L D,SCHUTTER B D,HELLENDOORN H.Modelbased predictive traffic control for intelligent vehicles:Dynamic speed limits and dynamic lane allocation[C] //Proceedings of 2008 IEEE Intelligent Vehicles Symposium.Eindhoven:IEEE,2008,7:174-179.
  • 10傅惠,胡刚,徐建闽,许伦辉.基于神经网络的城市关联交叉口交通流预测控制方法[J].中国公路学报,2008,21(5):91-95. 被引量:13

二级参考文献12

共引文献18

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部