期刊文献+

控制排队长度的高密度路网信号优化模型 被引量:4

Traffic signal control model based on queue management in high-density network
下载PDF
导出
摘要 为了提高高密度路网地区的交通管理水平,针对高密度路网特点,提出了一种分布式信号控制模型,用于控制交叉口的排队管理.该模型建立了多目标函数,包括了平均出行延误最小和平均排队占比最小;模型约束包括了排队长度估计、信号控制参数约束.此外,为了避免排队回流现象的产生,还建立了具有高优先级的排队回流约束.仿真结果表明,该模型提高了高密度路网地区的交通通行效率,并有效避免交叉口排队回流现象. To improve the traffic management in a high-density network,we propose a distributed traffic signal control model to manage the queues in the intersections,based on the characteristics of high-density network.This model min-imizes the average travel delay and the average queue ratio under the constraints on the queue dissipation and the signal control parameters.In addition,to avoid queue spillbacks,a high-priority queue spillback constraint is built.Simulation results illustrate the improvement of the traffic travel efficiency in high-density networks,and the effective avoidance of queue spillbacks.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第12期1693-1698,共6页 Control Theory & Applications
基金 国家自然科学重点基金资助项目(50738001) 中国博士后科学基金资助项目(20100471359) 江苏省博士后科研计划资助项目(0902004B) 教育部新世纪优秀人才支持计划资助项目(NCET-08-0115)
关键词 高密度路网 信号控制 排队管理 排队回流 high-density network traffic signal control queue management queue spillbacks
  • 相关文献

参考文献19

  • 1LANGDON P.A Better Place to Live:Reshaping the American Suburb[M].Massachusetts:University of Massachusetts Press,1997.
  • 2SADAYOSBI M,YUKINORI K.Self-organized control of traffic signals through genetic reinforcement learning[C] //Intelligent Vehicles '93 Symposium.Piscataway:IEEE,1993:113-118.
  • 3SADAYOSBI M,YUKINORI K.Genetic reinforcement learning for cooperative traffic signal control[C] //Proceedings of the First IEEE Conference on Evolutionary Computation.Piscataway:IEEE,1994,1:223-228.
  • 4Li M S,HAFAM J,PRYOR L,et al.A cooperative intelligent system for urban traffic problems[C] //Proceedings of the 1996 IEEE International Symposium on Intelligent Control.New York:IEEE,1996:162-167.
  • 5OU H T,ZHANG,W D,ZHANG W J,et al.Urban traffic multi-agent system based on rmm and bayesian leaming[C] //Proceedings of the American Control Conference.Danvers:American Autom Control Council,2000:2782-2783.
  • 6马寿峰,李英,刘豹.一种基于Agent的单路口交通信号学习控制方法[J].系统工程学报,2002,17(6):526-530. 被引量:62
  • 7LIU X M,WANG F Y.Study of city area traffic coordination control on the basis of agent[C] //IEEE 5th International Conference on Intelligent Transportation Systems.Singapore:IEEE,2000:758-761.
  • 8CHEN R S,CHEN D K,LIN S Y.ACTAM:cooperative multi-agent system architecture for urban traffic signal control[C] //IEJCE Transactions an Information and System.Japan:Inst Electron Inf & Cornman Eng,2005,E88-D(1):119-126.
  • 9HONG K L.A novel traffic signal control formulation[J].Transportation Research,Part A,1999,33A(6):433-448.
  • 10HONG K L,CHANG E,CHAN Y CH.Dynamic network traffic control[J].Transportation Research Part A,2001,35A(8):721-744.

二级参考文献12

  • 1曾建勤,王家捷,刘琨,方廷健.基于细胞模型及多目标优化的交叉口信号控制(英文)[J].中国科学技术大学学报,2005,35(2):284-290. 被引量:8
  • 2Sutton R S. Introduction: The challenge of reinforcement learning[J]. Machine Learning, 1992, 8: 225-227
  • 3LIN Long_Ji. Self_improving reactive agents based on reinforcement learning, planning and teaching[J]. Machine Learning, 1992, 8: 69-97
  • 4Watkins C J C H. Technical notes:Q_learning[J]. Machine Learning, 1992, 8: 55-68
  • 5He Guoguang,Noeth G. Urban traffic control system-A general analysis from the point of view of control theory[A]. Transportation Systems: Theory and Application of Advanced Technology[C]. Oxford:PERGAMON Press,1997. 518-521
  • 6Lim GiYoung,Kang JeongJin,Hong YouSik.The optimization of traffic signal light using artificial intelligence[C]//IEEE International Fuzzy Systems Conference.2001:1279-1282.
  • 7Robertson D I,Bretherton R D.Optimal control of an intersection for any known sequences of vehicle arrivals[C]// Proceedings of the 2nd IFAC-IFIP-IFORS Symposium of Traffic Control and Transport Systems.1974.
  • 8Head J R,Leathersich R,Purdie h.The use of microwave vehicle detectors with traffic signals[J].Traffic Engineering and Control,1997,38(1):13-15.
  • 9俞星星,阎平凡.强化学习系统及其基于可靠度最优的学习算法[J].信息与控制,1997,26(5):332-339. 被引量:3
  • 10陈森发,毛岚.城市交通信号灯模糊线控制及其仿真[J].系统仿真学报,2000,12(6):668-670. 被引量:17

共引文献67

同被引文献460

引证文献4

二级引证文献325

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部