摘要
由于工程、经济等领域的许多实际问题数学模型均为半无限规划问题,近年来,半无限规划问题成为求解实际问题的强有力工具.旨在探讨用于求解半无限规划问题的非线性Lagrange函数.在一定的条件下,将半无限规划问题转化为有限的离散化问题,并提出相应的非线性Lagrange乘子存在的充分必要条件.最后,给出了具体算例说明非线性Lagrange乘子的存在性.
There are many applications from engineering and economics which can be modeled as a semi-infinite programming(SIP) problem.In recent years,SIP problems has become a powerful tool for the mathematical modeling of many real-life problems.This article aims at discussing a nonlinear Lagrangian for solving semi-infinite programming problem.Under certain conditions,the SIP problem can be transformed into a discretization problem with a finite number of smooth constraints.The necessary and sufficient conditions for the existence of corresponding nonlinear Lagrange multiplier are presented.Finally,we show an illustrating example about existence of nonlinear Lagrange multiplier.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2010年第4期407-412,共6页
Journal of Liaoning Normal University:Natural Science Edition
基金
辽宁省博士科研启动基金项目(20091046)
辽宁省教育厅科学技术研究项目(2008376)