期刊文献+

Gellerstedt方程的基本解(英文)

FUNDAMENTAL SOLUTIONS OF THE GELLERSTEDT EQUATIONS
下载PDF
导出
摘要 本文研究了Gellerstedt方程的基本解.利用超几何函数,获得了Gelerstedt方程关于平面上任一点的基本解. In this note we are concerned with the fundamental solutions of the Geller-stedt equations.By use of the properties of hypergeometric functions,the fundamental solutions for Gelleratedt operator relative to any point in R^2 are obtained.
作者 许宁
出处 《南京大学学报(数学半年刊)》 CAS 2010年第2期230-241,共12页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Supported by National Natural Science Foundation of China(10771097)
关键词 Gellerstedt方程 超几何函数 基本解 Gellerstedt equations hypergeometric functions fundamental solutions
  • 相关文献

参考文献7

  • 1Hormander L.The Analysis of Linear Partial Differential Operators Ⅰ.2nd ed.,Hong Kong:SpringerVerlag,1990,1-436.
  • 2Leray J.Un Prolongementa de la Transformation de Laplace Qui Transforme la Solution Unitaires d'un Opérateur Hyperbolique en sa Solution élémentaire (Problème de Cauchy,Ⅳ).Bull.Soc.Math.France,1962,90:39-156.
  • 3Barros-Neto J and Gelfand I M.Fundamental Solutions for the Tricomi Operator.Duke Math.J.,1999,98:465-483.
  • 4Barros-Neto J and Gelfand I M.Fundamental Solutions for the Tricomi Operator Ⅱ.Duke Math.J.,2002,111:561-584.
  • 5Barros-Neto J and Gelfand I M.Fundamental Solutions for the Tricomi Operator Ⅲ.Duke Math.J.,2005,128:119-140.
  • 6Andrews G E,Askey R and Roy R.Special Functions.UK:Cambridge University Press,2000,1-684.
  • 7Erdélyi A,Magnus W,Oberhettinger F and Tricomi G.Higher Transcendental Function,Vols.Ⅰ.Ⅱ.Ⅲ,New York:McGraw-Hill,1953(Ⅰ),1-328,1953(Ⅱ),1-413,1955(Ⅲ),1-435.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部