摘要
在给出齐次常系数线性差分方程一般解的前提下,针对系数矩阵为三对角齐次常系数线性差分方程a·xj+b·xj_c·xj-1=o,j=1,2,…,n-1,a,b,c≠0 且 x0=xn=0的情形,给出其一般解形式并严格论证该解的存在,同时给出一推论的证明.
This paper gives the general solutions of the homogeneous linear difference equations with constant coeffcients firstly, as the case is that the matrix of coefficients is the tridiagonal matrix in the homogeneous linear difference equations with eontant coefficients,the question format is:a·xj+b·xj_c·xj-1=o,j=1,2,…,n-1,a,b,c≠0, and x0 = xn = O,let and ,giving secondly the general solutions form and proving rigidly existence theorem of the question solutions,at the same time,refering the proof of one of the lemmas appled this method.
出处
《内蒙古民族大学学报(自然科学版)》
2010年第6期607-610,共4页
Journal of Inner Mongolia Minzu University:Natural Sciences
关键词
三对角矩阵
齐次差分方程
常系数
线性差分方程
Tridiagonal matrix
Homogeneous equation
Constant coefficients
Linear difference equation