期刊文献+

FCM聚类算法的改进

Improved Fuzzy C-means Clustering Algorithm
下载PDF
导出
摘要 模糊C均值(FCM)算法广泛地应用于模式识别、图像分割等领域。根据FCM算法存在对初始解敏感且迭代过程中计算量大的问题,本文提出了一种改进的算法:先通过精简数据集,减少算法迭代的时间;再使用密度函数法得到FCM算法的初始聚类中心,以减少FCM算法收敛所需的迭代次数。实验结果表明,改进后的算法较好地解决了类中心的初值化问题,提高了算法的收敛速度和运行效率。 Fuzzy c-means(FCM) clustering was one of well-known unsupervised clustering techniques,which had been widely used in pattern recognition and image segmentation.Because FCM algorithm had the problems of initializing the cluster centers and a huge number of computing in the iteration,this paper presents an improved method:improve the algorithm optimizing the data set to reduce the time for each iteration,and then using cluster centers obtained by the density function as the initial cluster centers to reduce the number of iterations required for convergence.Experiments show this method solves the problem of initial centers,improves the speed of conver-gence and running effect.
作者 郭荣传 邹群
出处 《科技广场》 2010年第9期26-28,共3页 Science Mosaic
关键词 密度函数 模糊C均值聚类 数据集精简 初始化 Density Function Fuzzy C-means Clustering Data Reduction Initialization
  • 相关文献

参考文献5

二级参考文献20

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部