摘要
本文讨论如何将一堆底部为正方形,长、宽、高均不超过1的盒子装入一底为1×1,高为正无穷的柱形箱子,使装箱高度Z为最小的问题.该问题已知为NP难的问题.Li和Cheng在1990年提出了多项式近似算法C1,其渐近性能比r(C1)=2.6875(见参考文献[1]).本文根据算法C1的思想,进一步利用盒子底部为正方形的特点,尽可能不浪费高度空间,提出了所谓“单元装箱法”D,使新算法的渐近性能比得到改进:r(D)≤2251784=2.32015.
This paper discusses how to pack a set of boxes with square bottoms into a box B
with a fixed size square bottom and unbounded height such that the height of the packing is
minimized. It is required that all boxes be packed into B orthogonally and oriented in all three
dimensions.The problem is known to be NP hard.Li and Cheng developed an approximation
algorithm C 1 in 1990,of which the worstcase performance ratio is r(C 1)=2.6875 ( reference 1
). Based on the idea of algorithm C 1 and the characteristics of squares, a new packing method
D is developed, of which the worst case performance ratio is r(D)≤2251784=2.32015.
出处
《浙江大学学报(理学版)》
CAS
CSCD
1999年第3期44-51,共8页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金