摘要
对Rn的偶点集,平分它的超平面全体的模空间约化到RPn上紧化再作形变收缩,包含了一个RPn-1.由Poincare对偶及拓扑相交性质可知对Rn中n组处于一般位置的偶点集。
For a finite set in R n with even
cardinal,the supersurfaces split it into two equally part formes a moduli space.The moduli
space can be reduced into RP n ,its compactification contract to a sub complex,which
can be viewed as RP n-1 in RP n .Now,Poincare dual and the intersection property
applied,the author finally get the conclusion,which states there is a supersurface split the
generally sitted n ple even point set in R n into two equally part simultaneousy.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第4期678-685,共8页
Journal of Sichuan University(Natural Science Edition)