期刊文献+

一种基于用户层次信息的关联规则图书推荐系统 被引量:3

A Book Recommender System Based on User Hierarchy Association Rules
下载PDF
导出
摘要 关联规则是数据挖掘的重要模式之一,有着极其重要的应用价值。由于其自身的优点,关联规则得到了迅速发展,并开始了广泛应用,然而传统的关联规则算法在应用中有很多的不足。因此本文提出了一种基于用户层次信息的关联规则图书推荐系统,实验结果表明,该算法能够有效减少运算量,并能提高推荐的准确度。 Association rule is one of the important modes in data mining and has a very important value.Because of its good quality,association rules is becoming the popular one and has used widely.However,the traditional algorithms of association rules have lots of limitation in practical applications.In this paper,a recommender system was presented based on multi-user association rules.Experiment result showed that this method could decrease the computation multiplications and improve the accuracy of the recommendation.
出处 《现代情报》 CSSCI 2010年第12期73-76,共4页 Journal of Modern Information
关键词 关联规则 图书推荐 数字图书馆 association rule book recommendation digital library
  • 相关文献

参考文献4

  • 1朱玉全,孙志挥,季小俊.基于频繁模式树的关联规则增量式更新算法[J].计算机学报,2003,26(1):91-96. 被引量:80
  • 2AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules. Proceedings of the 20th International Conference On Very large Databases [C]. Santiago, 1994: 487-499.
  • 3Z.Zheng, R. Kohavi, L.Mason, Real World Performance of Association Rule Algorithms, InProc. 2001 ACM - SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, New York, ACM, 2001 : 401 -406.
  • 4DWCheung, JWHan, VTNgetal. A fast distributed algorithm for mining association rules. IEEE 4th Int'l Conf on Parallel and Distributed Information Systems, Miami Beach, Florida, 1996.

二级参考文献9

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 2[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 3[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 4[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 5[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 6[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 7[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194
  • 8[10]Han J, Jian P. Mining access patterns efficiently from web logs. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan,2000. 396~407
  • 9[11]Agrawal R, Srikant R. Mining sequential pattern. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995. 3~14

共引文献79

同被引文献96

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部